Azimuthally-sensitive two-pion interferometry in U+U collisions at STAR

> John Campbell for the STAR Collaboration The Ohio State University APS Ohio-Region Section – 3/28/15

Outline

- Shape selection in U+U
- 2nd order femtoscopy
- Data Set
- Results
- Conclusions

Shape selection in U+U?

of spectator neutrons (per side)

ZDC Centrality	U+U	Au+Au
0.125%	6	4
0.25%	7	5
0.5%	9	6
1.0%	12	8
2.0%	17	12

H. Wang, QM2014

Shape selection in U+U?

Shape selection in U+U?

- At 1%, Au and U look similar: *impact parameter fluctuations?*
- At 0.1%, Au and U separate: *shape selection?*

Azimuthal Femtoscopy

- Femtoscopy probes 3D shape of *homogeneity regions*
- Determine 3 length scales: $R^{2}_{out}, R^{2}_{side}, R^{2}_{long}$, and the transverse correlation $R^{2}_{out-side}$

- Length scales oscillate as source is viewed from different angles
- Magnitude of oscillation provides *eccentricity*

 $\varepsilon_f \equiv \frac{R_y^2 - R_x^2}{R_y^2 + R_x^2} \approx 2 \frac{R_{s,2}^2}{R_{s,0}^2}$

Data Set and Cuts

- 7M 1% ZDC triggered events ("fully overlapping") after basic event cuts
- Use STAR Time Projection Chamber for PID (No ToF)
- Perform analysis in four ZDC bins: 0.0-0.25%, 0.25-0.50%, 0.50-0.75%, 0.75-1.0%
- Five bins in multiplicity

- Five bins in *reduced flow parameter, q*,
- Similar to v₂ flow vector, but normalized by multiplicity

$$q_{2,x} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \cos 2\phi_i$$
$$q_{2,y} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \sin 2\phi_i$$

Results

∳[°]

¢[°]

Clear 2nd order oscillation in transverse radii Get *freeze out eccentricity* from R²_{side}

$$\varepsilon_{f} \equiv \frac{R_{y}^{2} - R_{x}^{2}}{R_{y}^{2} + R_{x}^{2}} \approx 2 \frac{R_{s,2}^{2}}{R_{s,0}^{2}}$$

8

Results – Multiplicity dependence

• No clear signal in eccentricity vs. multiplicity

 R²_{long} goes the right way, but could be trivial dependence

More initial energy density gives

higher mult and larger R² long

without shape selection

Results – q_2 dependence

 No clear signal in eccentricity vs. q₂, though scatter decreases with tighter cuts on ZDC

 R²_{long} follows trend one might expect

Body-Body events should have

more flow and smaller R²_{long}

Conclusions

- Definite 2nd order signal for femtoscopic radii
- Multiplicity:
 - No systematic trends in freeze out eccentricity
 - R_{long}^2 can be explained without invoking shape selection
- q₂:
 - No clear signal in freeze out eccentricity, though scatter decreases for tighter ZDC cuts
 - R_{long}^{2} follows trend one might expect for shape selection