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Abstrakt

Dosavadńı výsledky měřeńı jádro-jaderných srážek na RHIC naznačuj́ı, že hmota vytvořená

ve srážkách procháźı během svého vývoje fáźı, v které dominuj́ı partonové stupně volnosti.

Tato horká a hustá hmota vykazuje silný stupeň kolektivńıho chováńı, které se projevuje

silnou transversálńı expanźı. Zvláště zaj́ımavé jsou výsledky měřeńı eliptického toku baryon̊u

s v́ıcenásobnou podivnost́ı (Ξ a Ω), které ukazuj́ı, že i tyto částice se podstatnou mı́rou

účastńı kolektivńı expanze. Výsledky takovýchto měřeńı jsou silně závislé od toho, zda k

rozvoji kolektivńıho chováńı došlo během pozdńı (hadronové) fáze a nebo již dř́ıve během

rané (partonové) fáze. Vzhledem k tomu, že se předpokládá, že baryony s v́ıcenásobnou

podivnost́ı maj́ı malé hadronové účinné pr̊uřezy a tud́ıž se ze systému odděĺı dř́ıve než ostatńı

částice, lze usuzovat, že měřeńı s nimi budou citlivá předevš́ım na možnou partonovou fázi

vývoje systému.

Hlavńım ćılem této práce je studovat femtoskopické korelace mezi piony a Ξ ve srážkách

zlato-zlato při energíıch srážky na nukleonový pár
√
sNN=200 GeV a

√
sNN=62 GeV, které

byly zaznamenány experimentem STAR na urychlovači RHIC. Měřeńı dvoučásticových ko-

relaćı v hybnostńım prostoru při malých relativńıch rychlostech slouž́ı ke studiu prostoro-

časových rozměr̊u emisńıch zdroj̊u. Tato měřeńı s využit́ım pár̊u neidentických částic jsou

citlivá nejen k rozměr̊um zdroje, ale také k relativńım prostoro-časovým asymetríım mezi

zdroji těchto dvou druh̊u částic. Vzhledem k tomu, že tato asymetrie může vzniknout jako

d̊usledek kolektivńı expanze, nebo popř́ıpadě brzkého vyzářeńı Ξ, mohou být výsledky měřeńı

π−Ξ korelaćı použity ke studiu dynamiky systému vzniklého při srážce těžkých jader.

V této práci jsou prezentovány v̊ubec prvńı výsledky femtoskopických měřeńı s použit́ım

baryon̊u s v́ıcenásobnou podivnost́ı. V měřené korelačńı funkci je pozorován jak efekt elek-

tromagnetické tak i silné interakce, která se projevuje v podobě rezonance Ξ∗(1530). Toto

je také zároveň prvńı pozorováńı této rezonance ve srážkách těžkých jader.

Výsledky těchto měřeńı ukazuj́ı, že ve srážkách zlato-zlato při energíıch srážky na nuk-

leonový pár
√
sNN=200 GeV a

√
sNN=62 GeV se lǐśı zdroj pion̊u a Ξ nejen svou velikost́ı,

ale oba zdoje jsou v̊uči sobě i posunuty v prostoro-čase. V této práci je také ukázáno,

že tato pozorovaná asymetrie je v souladu s předpovědmi model̊u, které předpokládaj́ı

účast v́ıcenásobně podivných baryon̊u na kolektivńı expanzi. Toto měřeńı je tak nezávislým

potvrzeńı transverzálńıho toku baryon̊u s v́ıcenásobnou podivnost́ı.
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Abstract

Au-Au collisions at RHIC energies exhibit features suggesting that the system has undergone

evolution through a stage of partonic matter. The hot and dense system created in the

collision builds up substantial collectivity leading to rapid transverse expansion. In particular

recent measurements show that Ξ and Ω baryons develop substantial elliptic flow. Properties

of the induced flow strongly depend on whether the collectivity is achieved on partonic or

hadronic level. Multi-strange baryons may be, due to their presumably small hadronic cross-

sections, mainly sensitive to the early (possibly partonic) stage.

The main objective of this thesis is to study femtoscopic π−Ξ correlations in Au+Au

collisions at
√
sNN=200 GeV and

√
sNN=62 GeV recorded by the STAR experiment at

RHIC. Measurements of momentum correlations of particles at small relative velocities are

used to extract information about space-time extension of the particle-emitting source at

the time of kinetic freeze-out. Non-identical particle measurements are sensitive not only to

the size of the system, but also to an emission asymmetry between different particle species.

Since this asymmetry may arise from the collective expansion and/or early decoupling of Ξ

these measurements of π−Ξ correlations provide important test of the dynamics of heavy-ion

collisions.

In this work are presented first femtoscopic measurements with multi-strange baryons. In

the measured π−Ξ correlation function effects of Coulomb and strong interactions were ob-

served with the latter going via Ξ∗(1530) resonance. It is a first observation of this resonance

in collisions of heavy nuclei.

The measurements show that in Au+Au collisions at energies
√
sNN=200 GeV and

√
sNN=62 GeV the average emission space-time points of pions and Ξ are are not identical.

It is presented that the observed emission asymmetries and source-sizes are in agreement

with emission of particles coming from a source in which both the pions and Ξ take part in

the collective transverse expansion. This measurement is hence an independent confirmation

of a flow of multi-strange baryons in high energy heavy-ion collisions.
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Chapter 1

Strong interaction, quarks, partons

and QCD

1.1 Road to quarks and color

Looking back at the history of nuclear and particle physics it is stunning how much have

our knowledge and understanding of the basic principles of physics advanced in last hundred

years. It was only in 1911 when Ernest Rutherford discovered nucleus by scattering of

α-particle off golden foil[1]. Since then followed era of discoveries in this new field that

completely reshaped our view of what are the basic building blocks and forces of the universe

we live in. The early discovery of proton was followed by the discovery of positron in 1932 by

Carl Anderson [2] and neutron by James Chadwick [3] in the same year. Important advance

in the theory of nuclear forces was Yukawa’s realization of the relation between range of the

force mass of the mediating particle and in 1934 showing that short range strong interaction

has to be mediated by particle of a mass of approximately 200MeV. Further studies of nuclear

binding energies and proton neutron scattering led to a conclusion of a charge independence

of the strong interaction by Cassen and Condon [4] and later to the introduction of an

internal quantum number of “isospin” by Heisenberg. The concept of the particle-mediated

strong force invariant under transformation in the isospin space paved the way to unitary

symmetry, quark model and eventually Quantum Chromodynamics.

Multitude of new particles were discovered in the mid of the 20th century. The experi-

ments shown that certain particles, such as the kaons or certain hyperons (at that time called

V 0,+
1 , V 0,+,−

2 ), were created easily in particle collisions, but decayed much more slowly than

expected from their large masses and large production cross sections. It was also observed

that these particles are always produced in pairs. To resolve this a concept of new quantum

number called “strangeness” was introduced by Kazuhiko Nishijima and Murray Gell-Mann.

The property of strangeness is that it is conserved during strong and electromagnetic inter-
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2 1. Strong interaction, quarks, partons and QCD

actions, but not in the weak interactions. Based on the similarities of the already known

particles and the concept of underlying SU(3) flavor symmetry existence of new particles

Σ0, and Ξ0 was predicted in 1955 by Gell-Mann. The two particles were found soon after

in 1956 and 1959. In the following years discoveries of resonances from vector meson octet

as well as from spin 3/2 baryon decuplet were made. Observation of Ξ∗(1530) (which is a

particle of main interest for this thesis) and Ξ∗0 was announced in 1962 and led to imme-

diate prediction, made by Gell- Mann and Ne’eman, of not yet discovered iso-singlet Ω−.

Its discovery in 1964 was a confirmation of SU(3) flavor symmetry called by Gell-Mann the

Eightfold Way [5, 6] Even before the discovery of Ω− two papers, one from Zweig [7] and one

from Gell-Mann [8], laid out basics of what is known as additive quark model. In the quark

model the structure of the groups could be explained by the existence of three fundamental

particles of three flavors that the hadrons are made of. However some key problems still

remained. A ∆++ resonance in the baryon decuplet has spin of 3/2 and in the the quark

model is composed of three identical up quarks with parallel spins. The quarks are fermions

and they should follow the Pauli exclusion principle thus fully symmetric state would not be

possible. The problem was resolved in 1965 independently by Yoichiro Nambu with Moo-

Young Han and W. Greenberg by assigning quark additional inner SU(3) gauge degree of

freedom that was later given name color charge. Deep inelastic scattering (DIS) of electrons

on protons at SLAC showed that the originally purely mathematical concept of quark model

has connection with reality and protons are indeed composite objects made of partons.

Hand in hand with experimental discoveries theoretical description of the strong interac-

tion was developed. The Quantum Chromodynamics (QCD) is at present generally accepted

description of the strong interaction. QCD is a quantum field theory belonging to a class of

non-abelian gauge theories. The central idea of gauge theories is an invariance of the system

under transformations of internal degrees of freedom. The corresponding gauge symmetry

group then plays crucial role in determining the dynamics of the theory. The concept of gauge

invariance has been around for about ninety years but only later on with the success of QCD

it has been recognized as the principle governing fundamental forces between elementary

particles. It is of a historical interest that a first idea of gauge invariance came already in

1919 from Hermann Weyl [9]. Initially he tried to derive classical electrodynamics from local

scale (“gauge”) invariance. This effort failed but the same principle was successfully used

later in for Quantum Electrodynamics(QED). In the case of QED the gauge transformation

is not of measurable variable, but of an interval one - the phase of particle wave function.

The symmetry associated with phase is that of global U(1) symmetry group. However this

initial success was overlooked for about 50 years mainly due to the fact that the QED was

already derived and the gauge invariance was seen merely as coincidental symmetry not a

driving principle of dynamics of the theory. Next step toward successful gauge theory of the

strong interaction was made in 1954 by Robert Mills and Chen Ning Yang [10] in which they
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tried to derive the strong interaction base on SU(2) isotopic-spin gauge invariance based on

previous suggestion of proton and neutron differing only in iso-spin projection. Even thought

this attempt yielded theory with massless force mediators (thus long range interactions), it

meant that the previous idea of Weyl was extended from abelian SU(1) group to nonabelian

symmetry groups. This has a profound consequences since in these, now called Yang-Mills

theories, the vector fields are self-coupled as a direct result of the noncomutativity of the

non-abelian gauge symmetry group. In the 1960’s and 1970’s, this principle was successfully

used to unify electric and weak interaction into the Weinberg-Salam-Glashow electroweak

theory [11] with SU(2)×U(1)-invariant Lagrangian. The masslessness of classical Yang-Mills

fields was avoided by elaborating the theory with an additional “Higgs field”. A further at-

tempt(before the prediction of color) to describe the strong interaction by gauge field theory

was done by Yval Ne’eman in 1961 in [12]. This theory was derived based on SU(3) flavor

symmetry where the nowadays role of color charge was played by flavor quantum number

and role of self-interaction force-mediators field was played by eight vector mesons. With

the success of quark model in describing the large amount of hadrons and introduction of

color it has become evident that quarks, rather then meson or nucleons are the sources of the

strong interaction and the role of the relevant internal quantum number is played by color.

generation quark flavor mass[MeV] J B Q Iz

First
u up 1.3-3.0 1

2
1
3

2
3

1
2

d down 3-7 1
2

1
3 −1

3 −1
2

Second
c charm 1250±90 1

2
1
3

2
3

1
2

s strange 95±25 1
2

1
3 −1

3 −1
2

Third
t bottom 174200±3300 1

2
1
3

2
3

1
2

b top 4200±70 1
2

1
3 −1

3 −1
2

Table 1.1: The main quark properties J-spin, B-baryon number, Q-electric charge, Iz-isospin.
Mass taken from [13].

Therefore in the Quantum Chromodynamics (QCD), the theory we believe that describes

well the strong interaction the main constituents are six quarks. These are massive 1/2-spin

fermion fields described by Dirac bispinors ψf carrying flavor quantum number f which is

conserved in the strong interaction. Their main properties are listed in Table 1.1.

1.2 QCD Lagrangian

The dynamics of the non-interacting quarks is described by simple Lagrangian:

L = ψf (iγ
µ∂µ −mf )ψf , (1.1)
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where f denotes flavor of the quark, and with accordance with Einstein notation summing

over repeating indexes is performed. As stated above the dynamics of the system is can be

derived from invariance of the Lagrangian under local SU(3) transformations in the space of

inner color quantum number. This means that the quarks of every flavor are postulated to

be in 3-dimensional color space and transform in it as a vector and antiquarks as co-vector:

ψ(x) =


ψr(x)

ψg(x)

ψb(x)

 , ψ(x) =
(
ψr(x) ψg(x) ψb(x)

)
, (1.2)

where subscripts r,g,b denote the three color charges(red, green, blue). The unitary

transformation U ∈ SU(3) (UU † = 1, |U | = 1)then transforms

ψ(x) → Uψ(x) ψ(x) → ψ(x)U †. (1.3)

Without an incursion into group theory, the unitary operator U can be rewritten as:

U = exp

(
i
∑
a

θaTa

)
, (1.4)

where θa are real numbers and Ta are called the generators of the group. For unitary

group the generators are hermitian operators. The symmetry being local means that the op-

erator U changes smoothly as a function of space-time coordinates, U = U(x), and therefore

coefficients θa depend on the coordinates as well: θa = θa(x). In the case of SU(3) group

there are eight generators Ta. They can be chosen in an arbitrary way, the simplest and

most common choice are using traceless Gell-Mann matrices:

λ1 =

0 1 0

1 0 0

0 0 0

λ2 =

0 -i 0

i 0 0

0 0 0

λ3 =

1 0 0

0 -1 0

0 0 0

λ4 =

0 0 1

0 0 0

1 0 0



λ5 =

0 0 -i

0 0 0

i 0 0

λ6 =

0 0 0

0 0 1

0 1 0

λ7 =

0 0 0

0 0 -i

0 i 0

λ8 =
1√
3

1 0 0

0 1 0

0 0 -2

 .

(1.5)

In therms of these matrices the generators are Ta ≡ λa
2 . The non-interacting Lagrangian (1.1)
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is not invariant under transformation (1.3):

L′ =
(
ψU †

)
(iγµ∂µ −m) (Uψ)

= ψU † [iγµ(∂µU)ψ + iUγµ(∂µψ)−mUψ]

= ψ (iγµ∂µ −m)ψ + iψγµ(∂µU)ψ,

(1.6)

where the summation over flavor was omitted. It can be seen that the last term vanishes only

if U is independent of the space-time coordinate xµ. The principle of obtaining obtaining

dynamics of the system from gauge invariance means to recover the gauge invariance of the

(1.6) by introduction of vector field Aµ(x) into the Lagrangian with a proper interaction term

that cancels under the transformation the last term of (1.6). The simplest such Lagrangian

can be written as:

L = ψ(iγµ∂µ −m)ψ − 1

4
F a
µνF

aµν + gψγµψAµ, (1.7)

where vector field Aµ ≡ Aa
µT

a describes eight gluons. Thus arranging quarks into triplet (1.2)

with SU(3) transformation (1.4) directly requires eight vector fields. The Fµν is the corre-

sponding field strength tensor and g regulates the strength of the interaction. In order for the

interaction term of (1.7) to cancel out the last term of (1.6) the vector field has to transform

as

Aµ → UAµU
† − i

g
(∂µU)U †. (1.8)

Very important property of the QCD, arising from choosing non-commutative SU(3)

group is revealed when looking at the kinetic term for the vector field F a
µνF

µν
a . The non-

commutativity of the vector field operators render the kinetic term with QED-like

GQED
µν = ∂µAν − ∂νAµ (1.9)

non-invariant. The gauge invariance recovered by introducing additional term:

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gfabcAa

µA
b
ν , (1.10)

where coefficients fabc are the structure constants fulfilling the commutation relations of the

SU(3) generators

[Ta, Tb] = ifabcTc. (1.11)

This additional term gives a rise to a self-interactions of the vector field(gluons) via kinetic
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term, as it unfold into:

F a
µνF

aµν =(∂µA
a
ν − ∂νA

a
µ)

2

+ gfabc
[(
∂µA

a
ν − ∂νA

a
µ

)
Ab µAc ν + (∂µAa ν − ∂νAaµ)Ab

µA
c
ν

]
+ g2fabcfadeAa

µA
b
νA

dµAe ν .

(1.12)

The second and third term describe three and four gluon interaction. Thus as a conse-

quence of chosen non-abelian symmetry we have acquired eight gluon fields that can interact

with each via its color charge. In QCD we thus have three interaction vertexes:

q

q

g

g

g

g

g

g

g

g

1.3 Asymptotic freedom

Similar to QED, the propagator of non-interacting gluon is proportional to 1/q2 which leads

to quark-quark potential of the shape of ∼ 1/r. The profound consequence of the gluon self-

interaction terms is revealed when we study how the interaction, ie. the effective coupling

constant g2(q2), changes as function of the transferred 4-momentum q2 when higher order

quantum correction are considered. With the aid regularization and renormalization the

effective coupling constant is expressed as

g2(q2) =
g2(µ2)

1− [Π(q2)−Π(µ2)]
, (1.13)

where µ is a scale parameter( the momentum transfer at which the coupling constant is mea-

sured) that enters trough the renormalization process. The Π(q2) comes from the ’vacuum

polarization’ tensor

Πµν(k) = (gµνk2 − kµkν)Π(k2). (1.14)
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which describes response of the vacuum to a charge placed into it. In the leading order

perturbation QCD:

=Πµν(k2) + + + . . .

(1.15)

When performing such calculation , which is out of a scope of this work, one can see that

terms coming from gluon loops are added with opposite sigh that those coming from fermion

loop. This can be intuitively understood in the terms of screening and anti-screening of the

color charge. The diagram of 1.15 can be summed in general Yang-Mill theory with N colors

and n light flavors . In the leading order the coupling constant 1.13 will then be

g2(q2) =
g2(µ2)

1 + g2(µ2)
(4π)2

(
11
3 N − 2

3n
)
ln
( q2
µ2

) (1.16)

In the QED the conventional electric charge is defined at low momentum transfer µ2 → 0.

with the structure constant α = g2(µ2 → 0)/4π ≈ 1/137. In QED case (N = 0 and n = 1)

there are no color fields and only one electron with mass me. Thus 1.16 takes form of

g2QED(q
2) =

4πα

1− 2
3

α
4π ln

( q2

m2
e

) . (1.17)

showing the effective coupling increases with energy transfer. In the QCD with N = 3 colors

and n = 3 light quarks the situation is dramatically different as 1.16 gives

g2QCD(q
2) =

g2(Λ2)

1 + 9g2(Λ2)
(4π)2

ln
( q2
Λ2

) . (1.18)

where λ is a dimensional parameter introduced again by the renormalization process. Com-

pared to previous case the g2 decreases with increasing momentum transfer. This behavior

is called asymptotic freedom. Therefore applicability of perturbative calculations in QCD

is limited to high momentum transfers. A typical scale for measurements and calculations

of the strong coupling constant αS(q
2) = g2(q2)/4π is at the mass of the Z0 boson at

MZ0 = 91.2GeV/c2. The current world average is αS(MZ0) = 0.1189± 0.0010 [14].

Although all of the information about strong interaction is contained in the fundamental

QCD Lagrangian 1.4 we are not able to extract information from it according to our wishes as

the mathematical techniques of non-perturbative calculation are not yet developed enough.

We thus have to rely on effective theories and lattice calculation to learn about QCD vacuum

properties, quark confinement and chiral symmetry breaking.
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Figure 1.1: Left: Summary of αs(MZ) Right: The running coupling constant as a function
of momentum transfer Q2 determined from different processes. Figures taken from [15, 14]

1.4 QCD vacuum at zero and finite temperature

1.4.1 Confinement

Important property of strongly interacting particles is a color confinement [16], the absence

of hadronic states other than color singlets. In a nature we are thus unable to isolate and

directly observe any colored particle, quarks, gluon or any colored combination. There is not

a complete proof and understanding of the confinement, however rather solid and consistent

picture can be drawn from the above mentioned properties of running coupling constant and

lattice calculations.

The property of asymptotic freedom means that as the coupling constant αs → 0 the

gluon propagator will behave as free propagator proportional ∼ 1/q2. This means that in

the high energy limit, ie. at small distances, the inter quark potential will be similarly as

in QED of the form ∼ 1/r. However at large distances the inter quark potential does not

vanish as in the QED case, but since the gluons are color-charged they spread the color

and effective color charge seen by the two quarks increase. The inter quark potential then

increases as well. At a certain distance when the potential energy of the pair becomes high

it is more energetically convenient to create qq pair out of vacuum and create two bound

states instead.

This picture is supported by lattice calculations of inter quarks potential between static,

infinitely heavy, quarks. In the lattice calculation the space-time continuum is discretized
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Figure 1.2: The heavy quark effective potential calculated with three flavor QCD. Vertical
bars show the scale of the lattice spacing a, and intervals in physical units 0.1 fm wide for
reference. Figure taken from [17].

into lattice points and QCD action, based on Feynmann path integral, is calculated between

the individual points. The numerical calculation with static quarks of three flavors [17]

shows, as seen in Figure 1.2, that in the non-perturbative regime the potential increases

linearly with r. The slope of the linear rise is usually called the string constant, since it can

be thought of as the tension of a spring.

1.4.2 High density and finite temperature

The above calculations considered behavior of color charge and strong force in the QCD

vacuum, which results in the confinement of quarks inside hadrons. However the properties

of the strong force intuitively suggest that a state of matter in which the long-distance

confining force is wekened so that colored particles can travel across distance larger then size

of hadron, may exist under certain conditions. This deconfined phase called Quark-Gluon

Plasma(QGP) [18, 19] behavior of which would be driven by degrees of freedom of quarks

and gluons instead of hadrons could be created in two distinct ways:

The first way is low temperature (T = 0) large baryon density matter. At certain critical

baryon density ρc the baryons start to overlap. The quark will interact at short distances

and the matter will dissolve into degenerate quark matter. Such a matter would have high

net-baryon density nq � nq and is assumed to exist in universe in such a places such as cores

of neutron stars.

The second way is to create hadronic matter of high temperature (and low baryon den-

sity). To study the behavior of hadronic matter at high temperature the tools of finite
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temperature field theory [20, 21] have to be used. In the framework of finite temperature

field theory particle propagators and vacuum polarization tensor Πµν of 1.15 can be calcu-

lated. Indeed calculation from lattice QCD suggest that as the temperature increases the

effective inter-quark potential is modified. As shown in the Figure 1.3, in the vicinity of the

critical temperature Tc the linear part of the potential, responsible for quark confinement, is

weakened. Consequently, nuclear matter heated above the critical temperature should not

exhibit confinement.

0.00
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2.00

0 1 2 3 4 5

V(r)/√σ

r√σ

0.58Tc
0.66Tc
0.74Tc
0.84Tc
0.90Tc
0.94Tc
0.97Tc
1.06Tc
1.15Tc

Figure 1.3: Temperature dependence of the heavy quark potential for three flavor QCD in
the vicinity of critical temperature Tc. Values are scaled by string tension

√
σ obtained at

zero temperature. Figure from [22].

The latter case of the high temperature QGP is believed to resemble a matter that existed

in the early stages of the universe and may possibly be recreated in the high energy nuclear

collisions.

1.5 Phase transition in QCD

In the previous text it was advocated that for hadronic matter which is described at the most

fundamental level by QCD there exists a phase transition from confined hadronic matter into

deconfined QGP phase. To study such a phase transition is of a high importance for modern

nuclear physics and well as astrophysics. It is believed that deconfined QGP phase existed

in the early universe shortly after the Big-bang (t ∼ 10−6s) and as the universe cooled down

it uderwent a phase transition similar to that that we hope to recreate in the heavy-ion

collisions. It’s therefore of interest to study, both theoretically and experimentally, nuclear

matter at high temperature with aim to create deconfined phase governed by partonic degrees

of freedom and study the phase transition. The experimental access to information about

such deconfined is essential as even the most fundamental questions are not easily answered

from the first principle calculations, such as: At what temperature does the phase transition

occur? What is the nature if the phase transition, is it first or second order phase transition
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or is it a crossover? To what degree can we create a thermally equilibrated partonic matter

in the heavy ion collisions?

1.5.1 The bag model of hadrons

Event thought the perturbative QCD cannot describe the behavior of the confined quarks,

there are some phenomenological models that can give a relevant description. One of the

simplest, though illustrative models is the “MIT bag model” [23, 24] in which the long

distance non-perturbative behavior is replaced by a vacuum pressure acting on the hadron.

Confinement of the quarks is then the result of the balance between the inward pressure of

the bag and the outward pressure arising from non-zero kinetic energy of the quarks inside.

The hadrons are considered to be made of massless quarks which are allowed to move

freely inside a bag of a finite dimension,and are infinitely massive outside of the bag. Finding

relation between size R of the bag and energy E of the quarks corresponds to solving Dirac

equation and require that the scalar fermion density vanishes at the distance of R[19, 25].

The solution yields eigenvalues for ER:

ER = ωq ≈ 2.043, 5.396, 8.578, . . . . (1.19)

The non-perturbative effects of QCD which bound the quarks in the hadron are substituted

by a phenomenological bag pressure B. The total energy(mass) of the hadron EH then

comes from two terms: the energy associated with the volume due to the external pressure

and kinetic energy of the quarks inside[25]:

EH =
4π

3
R3B +

∑
q

ωq

R
, (1.20)

where q runs over quark content of the hadron.

Equilibrium between the external pressure of the vacuum and internal pressure due to

the kinetic energy of the quarks is reached when dE/dR = 0. In case of
∑

q ωq → Nqωq the

radius of the hadron R is related to the vacuum pressure B by

R4 =
Nqωq

4πB
. (1.21)

The actual value of the bag constant can be obtained from fits of mass spectra of light

hadrons. In literature the found value ranges 145MeV < B1/4 < 235MeV [26, 18, 19, 24, 23].

This model allows for a simple explanation of the phase transition from the normal

hadronic matter, with the quarks confined in the hadrons, to the deconfined phase. It can

be seen that if the pressure exerted from the quarks inside rises, there will be a point when

the pressure from inside exceeds the pressure of the bag. At this point the bag pressure will
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not be able anymore to hold the quarks inside of the hadron. The quarks and gluons will

then undergo a phase transition from the confined to the deconfined state.

The thermodynamical properties of a gas of non-interacting quarks and gluons can be

calculated using grand-canonical partition function

lnZ = V

particles∑
i

(±)gi

∫
d3p

(2π)3
ln
(
1± e−(E(p)−µ)/T

)
, (1.22)

where + in ± applies to fermions and − to bosons, µ is baryo-chemical potential, and gi

stands for degeneracy factors of each particle. The evaluation[26] of 1.22 gives pressure for

gas of gluons

PG = T

(
∂lnZ
∂V

)
µ,T

= gG
π2

90
T 4, (1.23)

and similarly for gas of massless quarks and antiquarks

PQ ≈ gQ
T 4

12

[
7π2

30
+
(µ
T

)2
+

1

2π2

(µ
T

)4]
. (1.24)

The degeneracy factor of gluon is

gG = 8(colors)× 2(polarizations) = 16. (1.25)

If we consider only two light quarks (up,down) the quark degeneracy factor is

gQ = 3(colors)× 2(spin states)× 2(flavors) = 12. (1.26)

We get from 1.23-1.26 the pressure exerted by the QGP gas, which at the point of phase

transition, at a critical temperature Tc, is equal to the bag pressure B

B = PQGP = PQ + PG

= T 4
c

[
37π2

90
+

(
µ

Tc

)2

+
1

2π2

(
µ

Tc

)4
]
.

(1.27)

Any of these conditions (high T or high µ) by itself, or their combination, should be sufficient

to create the deconfined phase of the quarks and gluons.

1.5.2 Phase Transition in Lattice QCD

The running coupling constant 1.18 shows that at high momentum transfers the perturba-

tive approach is applicable for calculations in zero temperature QCD. Similarly the asymp-

totic freedom may be expected at sufficiently high temperature. However, it is questionable
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Figure 1.4: The QCD phase diagram [27] in the temperature-chemical potential plane. The
solid lines depict region of expected first-order transition.

whether perturbation approach in the framework of finite temperature field theory[20] is ap-

plicable at the vicinity of the QGP phase transition that is within a reach of the heavy-ions

experiments.

Calculation of the thermodynamic partition function were performed in terms of pertur-

bative series in the powers of coupling constant up to order α
5/2
s [32, 33]. These calculations

do not lead to convergent results for range of temperatures that are of interest to us, as

they oscillate strongly with the order of expansion(Figure 1.5). The perturbative calcu-

lation become reliable only for αS < 0.01 which corresponds to temperatures of the order

T > O(102)GeV. Although advancements in perturbation calculations[28, 31] indicate that

improved perturbative methods may work already at temperatures that are only a few times

(∼ 4Tc) higher than the deconfinement transition temperature(Figure 1.6) it is still out of

experimental reach.

For the above reasons the so far most successful theoretical tool based on first principles

calculations which gives quantitative prediction in the vicinity of the QGP phase transition

remains the lattice approach to finite temperature QCD[34, 29, 27, 35]. The lattice calcula-

tion can be used to study multitude of properties of high-temperature QCD matter such as

energy density, pressure, chiral condensate, viscosity, screening lengths of color charges, and

equation of state.

The results of lattice calculations indeed suggest that the QCD-matter exhibits a phase

transition[35, 36]. The most common quantity taken as an order parameter for the phase

transition on the lattice is the value of Polyakov loop[37], which is related to a free energy

of a static quark. In a pure SU(3)C gauge theory(with gluons only) the value of Polyakov
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loop is zero at low temperature and nonzero at high temperature. This phase transition

indicated by the Polyakov loop, as shown in the Figure 1.7, is in the lattice calculations also

accompanied by a change in the chiral condensate 〈ψψ〉 which is and order parameter for

chiral-symmetry restoration phase transition. The properties of the actual phase transition,

even in the case of vanishing baryo-chemical potential, strongly depend on the number of

considered dynamic quark flavors and their masses. In the case of pure SU(3) gauge theory

the critical temperature Tc is know to be ≈ 270MeV[29]. However when light dynamical

quarks are included the calculations the Tc lowers to vicinity of 160MeV[38, 35]. As shown

in Figures 1.8a and 1.8b the pressure and energy density quickly rise above the critical

temperature. This change corresponds to sudden increase in the degrees of freedom available

to thermal excitations(1.25 and 1.26). The values saturate at about 2Tc, but not reaching

the Stefan-Boltzmann limit for ideal gas even at 4Tc, which is a sign that event at such a

high temperature some remaining long distance interaction is still present.

Not only the critical temperature, but also the type of the phase transition itself depends

on the number dynamical quarks and their masses [36, 35]. Latest advances in lattice calcu-

lation allow to extrapolate into region of non-zero chemical potential[39, 27, 40] and explore

the (µ, T ) phase diagram[41]. While for vanishing chemical potential the phase transition

is expected to be of first or second order [42, 36], the calculations with non-zero chemical

potential predict most likely a crossover type of transition. There is a possibility of existence

of a critical point in the phase diagram[43, 44] . The search for such a critical point will be

an important part of the program of heavy-ion physics in the near future.
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Figure 1.7: Lattice calculations in 2-flavor QCD showing deconfinement(left: 〈L〉-Polyakov
loop expectation value) accompanied by chiral symmetry restoration (right: 〈ψ̄ψ〉 -chiral
condensate). β is a bare coupling strength used in the calculations. Increase of β corresponds
to decreasing lattice spacing and increasing temperature. Figure from [35].
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Chapter 2

Heavy Ion collisions

The collisions of heavy ions at high energies is a way to create and study hot and dense nuclear

matter experimentally in the laboratory. When two heavy ions collide, part of their initial

kinetic energy is deposited in the collision region and cause excitation of the QCD vacuum.

If the energy density is high and the life time of the system long enough the created matter

may undergo the phase transition to quark gluon plasma. We expect that by analyzing the

final products of the collisions we will be able to tell not only whether the QGP was created,

but also to study the properties of this new phase of matter and it’s phase transition. In

this chapter is presented brief and simplified overview of our current understanding of the

heavy-ion collisions - it’s evolution and subset of observables and results that are relevant to

the topic of this thesis.

2.1 Collision evolution

Compared to the ”ordinary“ scattering experiments conducted with elementary particles the

unique aspect of the collisions of heavy ions are the typical time and space scales involved.

In the collisions of nuclei the created system undergoes non trivial evolution that in the case

of central events spans over scales of the order ∼ 10− 20 fm in time and space.

A schematic drawing of space-time evolution of the collision of the heavy ions is shown

in Figure 2.1. The evolution comprises of multiple stages each of which can be described

by different driving physics principle and influences different observables. Different measure-

ments in the final state are thus sensitive to different stages of the collisions. In order to

assess whether the QGP phase was created it is necessary to understand the whole evolution

of the heavy ions collisions including initial conditions and final hadronization.

17
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Figure 2.1: Schematic diagram of time-space evolution of the heavy ion collisions with de-
picted main stages. Figure from [45].

2.1.1 Initial geometry and preequilibrium

As in every experiment, control over initial conditions is crucial for interpretation of final

results. If the size of the system in the most central collisions leads to creation of a matter

with significantly different behavior, such as QGP, we can study the onset of such physics by

varying centrality as naturally the physics of the most peripheral collisions has to be close

to proton-proton collisions.

Figure 2.2: Two nuclei colliding with impact parameter b. The overlap region with partici-
pants is shown in dark while non-interaction spectators are in white. Figure from [46].

The properties and evolution of the system is largely determined by initial geometry

given by the centrality of the collision. When two nuclei collide the nucleons in the region of

the interacting overlap, as shown in the Figure 2.2, are called ”participants” while remaining

non-interacting nucleons are called ”spectators”. During the initial stage of the collision

part of the energy of incoming nuclei is deposited and large amount of entropy is produced.
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The mechanism of the parton production at early stage is not well understood at this point.

Multiple models that describe this pre-equilibrium phase exist that connect the geometry of

the collision with initial energy and baryon distribution. Although there exist other models,

such as pQCD mini-jet production, two most common approaches to the initial stage are the

Glauber model[47, 48] of incoherent parton scattering and Color Glass Condensate(CGC)

saturation model[49, 50, 51].

Glauber model

Glauber model[47, 48] treats semi-classically nucleus-nucleus collision as multiple nucleon-

nucleon interactions. It is used to relate the impact parameter b to other variables which

quantify the collision centrality, such as the number of participant Npart, and number of

binary collisions Ncoll. In the Glauber model the initial particle production is controlled

by combination of Npart and Ncoll distributions. It is assumed that hard pQCD processes

occur at the very early times of the collision and scale with binary collisions Ncoll, while

soft non-perturbative processes depend on the volume of the system thus scale with Npart.

The centrality of the collision can be determined either directly by detecting the remaining

spectators or indirectly by measurements of observables depending on the volume of the

system and hence centrality such as final multiplicity.

Color Glass Condensate
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Figure 2.3: Gluon distribution as a function of x as measured by HERA experiment[52, 53].
Figure from [54].

Another way of describing initial stage of nucleus-nucleus collisions is based on Color

Glass Condensate model and Glasma[49, 50, 51, 54]. As measured by deep inelastic scattering

experiments the number of sea quarks and gluons which carry a certain momentum fraction x

of the nucleus increases with decreasing x and increasing momentum transfer Q2(Figure 2.3).



20 2. Heavy Ion collisions

The typical momentum of theses partons is on the order of ΛQCD ∼ 200 MeV. From un-

certainty principle their longitudinal size is 1/p ∼ 1 fm, while the wave function of valence

quarks is contained within ∼ 2R/γ. Therefore in ultra-relativistic collision where γ > 2R
1fm

the low-x partons, namely gluons, will play dominant role. However the increase of the

number of low-x gluons xg(x,Q2) does not grow forever. The gluons with typical transverse

size of 1/Q start to overlap at certain density and interaction in which two gluons fuse to

one (g + g → g) leads to a saturation of gluon density. The gluons then form a classical

Yang-Mills field called ”color glass condensate“ and the nucleus-nucleus collision is described

as a collision of two classical field with fast partons acting as sources[54].

2.1.2 Fireball expansion

After the dense hadronic matter is produced in the initial phase of the collisions the whole

region is expected to expand before it reaches final break-up. The rate of the expansion

depends on the underlying constituents and their interactions inside of the ”fireball”.

For a description of such a dense, strongly interacting matter is most convenient to use

hydrodynamic framework, as it was first proposed by Landau in 1953[55]. It should be

stressed that for applicability of hydrodynamics approach to the heavy ions collision basics

prerequisites must be satisfied. The hydrodynamics requires local thermal equilibrium to

be established. While this is automatically assumed in some of the theoretical calculation

,such as those on lattice, it’s not obvious that it is true in reality for such a small and short-

lived system. Thus answering the question of thermalization itself is important for heavy-ion

collisions, as macroscopic properties such as temperature, pressure and entropy are not well

defined otherwise.

It’s expected that if the QGP is to be formed it has to be immediately after the collision

when the energy density is highest and the temperature of the matter is above the critical

value of Tc. The system will thereafter expand and cool till it reaches the Tc where a

phase transition into hadronic matter occurs. The exact nature of the phase transition and

hadronization is not yet known, although the data suggest that at conditions at RHIC it is

a crossover transition - mixed phase of partonic and hadronic matter. Even in the hadronic

phase the system interacts and keeps expanding and cooling. Individual particles can still

be created and destroyed in the inelastic collisions until system cools down to a temperature

of ”chemical freeze-out‘, Tch. After this the inelastic collision cease and particle ratios are

fixed. The expansion continues until the “kinetic freeze-out” (Tk). At this point hadrons

stop scattering and free-stream out of the system.
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2.2 Probes (Observables)

Heavy-ions experiments are designed to measure number of different observables. It’s unlikely

that the conclusive evidence of a formation of the QGP could be based on a single observable.

Instead, simultaneous observation of many signals is required. It is expected that only

consistent analysis of many signal can lead to an unambiguous identification of the phase

transition. Many of the measured signals are only indirect, because they are related to

particles that undergo many reinteractions from the time of the early collision to the time

of the final detection.

In the following section are discussed the key measurable signals giving information about

different parts of the ultra-relativistic heavy-ions collision and possible QGP phase transi-

tion. The experiment at RHIC and experiments at lower energies extracted vast amount

of experimental information about heavy-ions collisions. The emphasis of this section is to

briefly review those predictions and results that are connected with topic of this thesis and

allow to present the physics motivation and frame the obtained results in the wider picture

of the current understanding of this field of research.

2.2.1 Energy density
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Figure 2.4: (a)Charged particle pseudo-rapidity distributions and it’s centrality dependence,
as measured by PHOBOS experiment, at

√
sNN=19.6 and 200 GeV. Figure adapted from

[56]. (b)Shifted pseudo-rapidity distribution dNch/dη
′ where η′ = η − ybeam for the 0-6% of

most central collisions at three different Au+Au collision energies. Figure from [57].

Pseudo-rapidity distributions of particle production have been meassured at RHIC at

various energies and collision systems[59, 60, 57]. It describes general characteristics of the

particle production and can be used to estimate energy density in the system. The Fig-

ure 2.4a shows example pseudo-rapidity distribution of charged particle, dNch/dη, measured

by PHOBOS experiment at two different collision energies. As we progress to large energies

the distribution gets wider and starts to develop a plateau at the mid rapidity. The tails
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PHENIX and WA98 experiments together with model predictions. (b) 〈dET /dη〉/〈dNch/dη〉
vs. Npart for the same data. Both figures adapted from [58].

of the distribution close to the rapidity of the beam show strong similarity. This is shown

by Figure 2.4b where distribution is shifted to the beam rapidity a replotted as a function

of η′ = η − ybeam. The distributions are then similar across different beam energies and

also collision systems. This feature is called limiting fragmentation and show that at high

enough energies the particle production close to the beam rapidity has reached a limiting

value. In the mid-rapidity region the number of produced particles depends on collision en-

ergy and number of nucleons participating in the collision (ie. the centrality). By measuring

at the same time the transverse energy distribution dET /dη [61, 58], as shown in the Fig-

ure 2.5a, we can estimate the average transverse energy per produced particle. The results

on 〈dET /dη〉/〈dNch/dη〉 in Figure 2.5b tell us that average transverse energy of ∼ 0.8 GeV is

only weakly dependent on energy. By combining these measurements we can make a crude

estimate of the energy density ε0 achieved in the collision with use of simplified Bjorken

scenario of longitudinal expansion [62]:

ε0 =
1

πR2τ0

dET

dη

∣∣∣∣
yw0

. (2.1)

With the estimate of formation time τ0 = 1 fm and initial size R = 1.2A1/3 we ar-

rive at ε0 ∼ 4 GeV/fm3 which is more then theoretically estimated critical density

εcrit ∼ 1 GeV/fm3 necessary for phase transition to the QGP phase.
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2.2.2 Particle ratios and yields

Particle production in a system that has reached a thermal equilibrium can be described by

a grand canonical ensemble of statistical physics. The density of particle number ni is

ni = diγS

∫
d3p

(2π)3
1

exp [(Ei − µi)/T ]± 1
, (2.2)

where ~p is momentum, T temperature, and di, Ei, µi are spin degeneracy factor, total energy

and chemical potential of the i-th particle respectively. The ± depends on whether the

particle is boson(+) or fermion(-). In chemical equilibrium µi = µBBi − µsSi − µII
3
i , where

Bi, Si, and I
3
i are baryon number, strangeness and third isospin component of the particle.

This means that by analyzing yields of particles produced at mid-rapidity, those mostly

not coming from initial stages of the collisions, and their ratios we can access information

about the bulk of the matter at the time when the particle production ceased - at the time

of chemical freeze-out Tch. The question of the thermalization and the temperature of the

bulk is important, and crucial role in this analysis plays production and thermalization of

strangeness.

Strangeness is not initially present in the system, thus all strange particles must be
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created during the collision and the subsequent evolution of the system. In a collision of

non-strange particles the strangeness (ss̄-pair) is produced via associated production such as

ππ → KK̄ with relatively low cross section and higher threshold energy (in the mentioned

case of ππ → KK̄ it is ∼ 700 MeV). In the case of deconfined QGP the ss̄-pairs can be

created by gluon fusion gg → ss̄ without the non-strange quarks thus with lower threshold

energy of ∼ 200 MeV. This energy is of the order of predicted temperature Tc necessary for

the creation of QGP. The strange quarks can be easily produced in the QGP by collisions of

thermalized partons. It is then predicted that an increased production of strangeness would

be a viable sign of QGP [64, 65]. The presence of strangeness in the bulk of created matter

does not automatically mean that the system lived long enough for strangeness to reach

the chemical equilibrium that justifies the use grand canonical ensemble. For this reason a

strangeness suppression factor γS is introduced into 2.2 that can be regarded as a measure

of equilibration of the strangeness.

Figure 2.6 presents STAR results on statistical model fit wit Au+Au data at
√
sNN=200 GeV[63]. As the inset of the figure shows, as we approach from peripheral

to central collisions, the γS rises and reaches ∼ 1 for the most central collisions. This suggest

that the system in central collisions may live long enough to attain chemical equilibrium

even for the strange quark. The temperature of chemical freeze-out obtained from such fits

is found to be in a vicinity of Tch = 156 ∼ 160 MeV[63, 66, 67, 68] which is close to the

predicted QCD phase transition temperature. The extracted Tch was found to depend only

slightly on whether particle species used for fit include strange and multistrange particles

and also insensitive to centrality of the collision. This could imply that the system created in

Au+Au collisions at RHIC always develops toward the same chemical-freeze-out condition

regardless of the initial conditions.

2.2.3 Transverse spectra and Kinetic freeze-out

A characteristic feature of the heavy-ion collisions is a creation of system that strongly

interacts for a significantly long time. This is expected to lead not only to the thermalization,

but also to development of pressure and subsequent collective transverse expansion of the

whole system. To describe single particle transverse momentum spectra at mid-rapidity it’s

necessary to superimpose such a common flow on the above described thermal emission of

particles. The distribution of 2.2 is then modified to

d6Ni

d3x d3p
= di

d3p

(2π)3
1

exp [(u(x)νpνi − µi)/T ]± 1
, (2.3)

where u(x)ν is a 4-velocity field describing the flow of system.

The description of the transverse flow itself is often obtained from hydrodynamicaly
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motivated parametrization, the so called blast wave model [69, 70, 71, 72, 73, 74]. These

models allow to describe, under simplified assumptions, the emission of the particles from

locally thermalized and transversely expanding source by few parameters only. The two most

important parameters are the kinetic freeze-out temperature Tkin and average velocity of the

transverse flow 〈β〉.
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The identified particle transverse mass mT =
√
p2T +m2 spectra has been measured with

excellent precision for not only the most common particles (π,p,K - Figure 2.7)[66, 67, 76], but

also for multistrange particles(φ,Ξ,Ω - Figure 2.8) [77, 75, 78, 79, 80] and resonances[81, 82].
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The effects of the transverse flow are well visible from comparison of the data from most

central collisions in Figure 2.9. Going from pions to heavy particles the spectra flatten in

low mT region developing the so called “shoulder-arm” shape. The blast wave fits[69, 83]

to the spectra then permit to extract the Tkin and 〈β〉 for the individual particle species.

The obtained results visualized in Figure 2.10 show that kinetic freeze-out parameters for

π,K,p are centrality dependent with decreasing Tkin and increasing 〈β〉 as we progress from

peripheral to central collision. This shows that in central collisions for the most common

particle species there is a significant delay between the chemical and kinetic freeze-out during

which the system cools and develops significant radial flow by hadronic reinteraction.

However, as also shown in the Figure 2.10, the kinetic freeze-out parameters from for

multi-strange particles[63, 75, 68] coincide with those of chemical freeze-out. This supports

the idea that multistrange-particles may kinetically freeze-out earlier, and not participate in

the hadronic phase due to their presumed low hadronic cross section[84].

2.2.4 Azimuthal anisotropy

In non-central collisions the overlap region where participants interact and deposit energy

is azimuthaly asymmetric. The shape of the region is elongated in the direction out of the

reaction plane; often quoted as an “almond shape”. The created matter is not homogeneous
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and isotropic. This density gradient, if the matter reinteracts and thermalizes, gives rise to a

pressure gradient which drives the collective expansion. By this process the initial geometrical

asymmetry is transformed into azimuthal asymmetry of observed particle yields[87].

Experimentally the asymmetry is measured as coefficients in Fourier expansion of the

azimuthal dependency of the particle spectra with respect to the reaction plane:

E
d3N

d3p
=

d2N

2π pT dpT dy

(
1 +

∞∑
n=1

2vncos [n(φ−Ψr)] + . . .

)
, (2.4)

where φ−Ψr is the angle of the particle with respect to the reaction plane Ψr. The v1 and v2

are called the “directed” and “elliptic” flow. At mid-rapidity the v1 by symmetry vanishes,

while v2 can be non-zero. The strength of the v2 is argued to be sensitive predominately to

early times of the expansion and the possible phase transition [87, 88, 89]. One of the most

pronounced predictions is a mass ordering of v2 with the mass of the particle in a system

driven by hydrodynamic expansion and it’s sensitivity to the equation of state[90].

As shown in the Figure 2.11 measurements at
√
sNN=200 GeV by STAR and PHENIX

[91, 92, 93] show clear mass ordering of v2 in the low pT up to pT ≈ 1.5 GeV/c. The par-

ticles with smaller mass show higher v2 at a given pT then those with higher mass. The

measurements at low pT are rather well reproduced by hydrodynamics models.

Latest STAR results on elliptic flow[86, 92, 94, 95] ( Figure 2.12 ) give evidence that this

flow-induced mass ordering holds even for strange and multi-strange particles such as φ,Ξ,
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and Ω. However at intermediate 1.5 < pT < 5 GeV/c the mass ordering ceases and the v2

reaches a plateau with different value for baryon and mesons. This baryon-meson splitting

can be explained in the framework of coalescence models assuming that all quarks attain the

same v2 throughout the evolution of the system. This is especially important assumption in

the case of strange quarks. In the Figure 2.13 is shown v2 scaled by number of constituent

quarks versus similarly scaled pT and mT − m. In the region 0.6 < pT /nq < 2 GeV/c the

v2/nq is the basically the same regardless of particle species. This may point to a picture

in which the anisotropic flow builds up already at the partonic stage and the hadronic v2 is

mainly a summation of v2 of the underlying quarks.

2.3 Summary

From the measurements obtained at the RHIC collisions energies we can compose a very

interesting picture of the heavy ion collisions. Although there are still many open questions

remaining we can summarize some of the findings into a rather self-consistent picture.

The system created in the collision has high initial density and reaches temperature

well above the critical temperature of the phase transition. Measurements show that the

system undergoes violent evolution. The system exhibits very strong collective behavior

in the transverse direction. At the energy of the RHIC collisions it is for the first time
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that the development of the system seem can be well described by hydrodynamics. Most

interestingly the observed collective behavior can be interpreted as coming predominantly

from early partonic rather then later hadronic phase. The chemical composition of the

particle species shows that the system evolves toward a common temperature of a chemical

freeze-out. In the central collisions the system interacts and exists long enough to even

thermally equilibrate the heavier strange quarks.

To study the partonic phase it is best to use observables that are more sensitive to the

early stages of the collision and are less affected by the hadronic gas phase. The multistrange

baryons could be regarded as good candidates for such a probe. Although they are affected

by the partonic collectivity as much as other particles they seem to decouple earlier from

the system shortly after the chemical freeze-out. This behavior could be a result of them

having small interaction cross section with other non-strange hadrons, mainly pions. This

assumption is rather speculative as the π−Ξ cross section was never exactly measured.

The question of the flow and early freeze-out of the multistrange baryons is interesting and

important topic. The information about freeze-out of multistrange baryons is derived from

the measurements in momentum space, but the flow and early freeze-out would also mean a

very specific space-time configuration at the time of emission. The study of the space-time

properties of the source emitting multistrange baryons, namely Ξ, is a main topic of this

thesis.
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Chapter 3

Two-particle correlation femtoscopy

The technique of particle femtoscopy utilizes measurements of momentum correlations be-

tween two particles at small relative momenta in their center of mass frame (CMS). This

technique has been widely used over period of more then 25 years to study space-time charac-

teristics of the particle production down to the details on level of 1 fm(= 10−15 m), therefore

gaining the name “femtoscopy”.

As a beginning of the field of femtoscopy is often regarded an experiment of Robert

Hanbury-Brown and Richard Twiss in mid-fifties. For this experiment the Hanbury-Brown

and Twiss developed a novel technique of photon intensity interferometry to be used as an

alternative to the amplitude interferometry of Michelson[96, 97]. They successfully measured

the angular radii of the Sirius star using space-time correlation of photons incoming into their

two radio telescopes. As a recognition to their achievement the femtoscopic measurements

are usually called HBT. However, we should note that in the above mentioned experiment

the correlation comes from the interference of the two classical electromagnetic fields in the

detection region. This effect is not of a quantum origin and would persist even under a limit

h −→ 0.

The momentum correlation as we understand femtoscopy throughout this work started by

the observation of the so called GGLP effect. In 1959-1960 G.Goldhaber, S.Goldhaber,W.Lee

and A.Pais discovered in the annihilation of p̄−p that there is an excess of pairs‘ of identical

pions at small opening angles when compared to the unlike sign pions[98]. The effect was

ascribed to the Bose-Einstein statistics of the pions[99]. This effect is of quantum origin, and

as pointed out [100, 101] in a sense orthogonal to the correlation analyses of Hanbury-Brown

and Twiss.

For historical reasons the term HBT if often used when referring to femtoscopic correla-

tion measurements. Many terms such as ‘HBT - radii‘ and ‘HBT-puzzle‘ are well known in

the heavy-ion community. Hence in this work the term HBT will be used when necessary for

clarity of the text, but it will always mean momentum correlations similar to GGLP effect.

31
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Figure 3.1: Basic principle of femtoscopy: A boson of momentum p1 is detected at x′1 and
another identical boson with momentum p2 is detected at x′2. Since we cannot distinguish
the particles from each other, we have to consider a superposition of both trajectories.

3.1 Formalism

In the general formalism of femtoscopy the particles emitted at close relative velocities may be

correlated not only due to quantum statistics, but also due to strong or Coulomb interactions.

These are called the “final state interactions” (FSI) as they can be viewed as an interaction

that only slightly modifies momenta of the particles in their final states. The FSI interactions

act between identical as well as non-identical particles. The use of the latter with particles

of unequal masses can yield additional information about space-time properties of the source

which are not accessible by measurement identical particles only. To review the theoretical

framework of femtoscopy for the needs of this work we follow the formalism used by Lednicky

in [102].

The probability of detecting two particles with 4-momenta p1 = (E1,p1) and

p2 = (E2,p2) is related to doubly inclusive cross section determined by production amplitude

T (p1, p2 ;α):

(2π)6γ1γ2
d6σ

d3p1d
3p2

=
∑
α

|T (p1, p2 ;α)|2 , (3.1)

whereγi = Ei/mi, and α = {S,mS , α
′} denotes summation over total spin S of the pair and

it’s projection mS as well as summation over quantum numbers α′ of other particles and

integration over their momenta. For identical particles the amplitude T (p1, p2 ;α) must be

properly symmetrized or antisymmetrized.

In a case of no FSI the production amplitude T = T0(p1, p2 ;α) in the form of Fourier

transform
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T0(p1, p2 ;α) =

∫
d4x1 d

4x2 e
−ip1x1e−ip2x2T(x1, x2 ;α)

=

∫
d4X d4r e−iPXe−iq̃r/2T(X, r ;α) =

∫
d4re−iq̃r/2τP (r ;α) (3.2)

allows to separate four-coordinates of the 2-particle center of mass of the system

(CMS) X = [(p1P )x1 + (p2P )x2]/P
2, P = p1 + p2, and integrate over them. What

remains are relative four-coordinates r = (t, r) and generalized relative 4-momentum

q̃ = q − P (qP )/P 2,q = p1 − p2. Since qP = m2
1 − m2

2 then for identical particles q̃ = q.

Femtoscopy with non-identical particles is most often done in CMS system of the pair where

q/2 = p1 = −p2 = k∗. If FSI is present between the emitted particles the T (p1, p2 ;α) is

modified by an additional term ∆T (p1, p2 ;α) originating from the FSI:

T (p1, p2 ;α) = T0(p1, p2 ;α) + ∆T (p1, p2 ;α), (3.3)

∆T (p1, p2 ;α) =
i
√
P 2

2π3

∫
d4k

T0(k, P − k ;α)fS∗(p1, p2 ; k, P − k)

(k2 −m2
1 − iε)((P − k)2 −m2

2 − iε)
. (3.4)

The fS∗(p1, p2 ; k, P − k) is a scattering amplitude, which in a case of small relative momenta

k∗, is diagonal in total spin S and does not depend on its projection. Inserting 3.2 and 3.4

into 3.3 gives

T (p1, p2 ;α) =

∫
d4x1 d

4x2 ψ
S(−)
p1,p2(x1, x2)T(x1, x2 ;α)

=

∫
d4r ψ

S(−)
q̃ (r)τP (r ;α),

(3.5)

where

ψS(−)
p1,p2(x1, x2) = e−iPrψ

S(−)
q̃ (r) =

[
eiPrψ

S(+)
q̃ (r)

]∗
(3.6)

is Bethe-Salpeter amplitude [103, 104] describing system of interacting particles and reduced

Bethe-Salpeter amplitude ψ
S(−)
q̃ (r) which depends only on the relative r and q̃. Thus, as

a result of FSI the plane waves in 3.2 are replaced by ψ
S(−)
q̃ (r) in 3.5. The two-particle

inclusive cross section is obtained by substituting 3.5 into 3.1:

(2π)6γ1γ2
d6σ

d3p1d
3p2

=
∑
S

∫
d4x1 d

4x2 d
4x′1 d

4x′2 ρS(x1, x2 ;x
′
1, x

′
2)ψ

S(−)
p1,p2(x1, x2)ψ

S(−)
p1,p2

∗
(x′1, x

′
2)

=
∑
S

∫
d4r d4r′ ρPS(r, r

′)ψ
S(−)
q̃ (r)ψ

S(−)
q̃

∗
(r′),

(3.7)
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where

ρS(x1, x2 ;x
′
1, x

′
2) =

∑
M,α′

T(x1, x2 ;S,M,α′)T∗(x′1, x
′
2 ;S,M,α′),

ρPS(r, r
′) =

∫
d4X d4X ′ e−iP (X−X′)

ρS(X +
p2P

P 2
x,X − p1P

P 2
x,X ′ +

p2P

P 2
x′, X ′ − p1P

P 2
x′)

(3.8)

represents a space-time density matrices.

The space-time density matrix is easily shown to be related to two particle emission

function by considering the particles to be without FSI in 3.7. Replacing the wave function by

a plane wave ψ
S(−)
p1,p2 = e−ip1x1−ip2x2 and performing partial Fourier transform in coordinates

x̄i =
1

2
(xi + x′i) εi = xi − x′i (3.9)

in 3.7 yields

(2π)6γ1γ2
d6σ0

d3p1d
3p2

=
∑
S

∫
d4x1 d

4x2 d
4x′1 d

4x′2 ρS(x1, x2 ;x
′
1, x

′
2)e

−ip1(x1−x′
1)−ip2(x2−x′

2)

=
∑
S

∫
d4x̄1 d

4x̄2GS(x̄1, p1 ; x̄2, p2) =
∑
S

∫
d4r̄ gPS(r̄, q̃) ,

(3.10)

where

GS(x̄1, p1 ; x̄2, p2) =

∫
d4ε1 d

4ε2 e
−ip1ε1−ip2ε2ρS(x̄1 +

ε1
2
, x̄2 +

ε2
2
, x̄1 −

ε1
2
, x̄2 −

ε2
2
)

gPS(r̄, q̃) =

∫
d4X̄ GS(X̄ +

p2P

P 2
r̄, p1 ; X̄ − p1P

P 2
r̄, p2).

(3.11)

The GS(x̄1, p1 ; x̄2, p2) is then a two-particle emission function, partial Fourier transform of

the density matrix, closely related to Wigner density and gS(r̄, q̃) depends only on relative

distances.

3.1.1 Identical non-interacting particles

The formalism of classical femtoscopic measurements( the GGLP effect) that deals only

with identical non-interacting particles can be obtained from the above general case. First

for identical particles the Bethe-Salpeter amplitude ψ
S(−)
p1,p2(x1, x2) must be replaced by a
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properly symmetrized one:

ψS(−)
p1,p2(x1, x2) →

1√
2

[
ψS(−)
p1,p2(x1, x2)+(−1)SψS(−)

p2,p1(x1, x2)
]
. (3.12)

Although in a case of measurements with identical pions and kaons, the particles interact

also by Coulomb and the strong force the formalism for non-interacting can be used to a

good extent. In these systems the effects of the strong interaction at low q are negligible

and correlation due to Coulombic force can be subtracted in a first order of approximation.

Under such circumstances we can replace ψS(−) with plane waves

ψS(−)
p1,p2(x1, x2) =

1√
2

[
e−ip1x1−ip2x2+(−1)Se−ip1x2−ip2x1

]
. (3.13)

Inserting the symmetrized wave function 3.13 into 3.7 gives the two particle inclusive cross-

section

(2π)6γ1γ2
d6σ

d3p1d3p2
=
∑
S

∫
d4x1 d

4x2 d
4x′1 d

4x′2 ρS(x1, x2 ;x
′
1, x

′
2)

1

2

[
e−ip1ε1−ip2ε2 + e−ip1ε2−ip2ε1 + (−1)Seipε1−ipε2

(
e−i(x̄1−x̄2) + e+i(x̄1−x̄2)

)]
=
∑
S

∫
d4x̄1 d

4x̄2
[
GS(x̄1, p1 ; x̄2, p2) +GS(x̄1, p ; x̄2, p)(−1)Scos(qr̄)

]
,

(3.14)

where substitutions similar to 3.9 was done:

x̄i =
1

2
(xi + x′i) εi = xi − x′i p =

1

2
(p1 + p2) r̄ = x̄1 − x̄2 (3.15)

The actual correlation function is usually defined with respect to the uncorrelated two-

particle distribution 3.10:

R(p1, p2) =
d6σ(p1, p2)

d6σ0(p1, p2)
. (3.16)

To experimentally obtain such a fully uncorrelated “background” distribution is a matter

of rather subtle technique that will be explained later. Using the above definition of the

correlation function with 3.14 and 3.10 we arrive at

R(p1, p2) = 1 +

∑
S

∫
d4x̄1d

4x̄2GS(x̄1, p ; x̄2, p)(−1)Scos(qr̄)∑
S

∫
d4x̄1d4x̄2GS(x̄1, p1 ; x̄2, p2)

. (3.17)

The numerator of 3.17 depends on two-particle emission function enumerated at off-mass

shell momentum p:

GS(x1, p ;x2, p) = GS(x1, p1 − q
2 ;x2, p2 +

q
2) (3.18)
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If the emission function GS varies only slowly with momentum we can use the so called

“smoothness approximation” and do , for small values of q, replacement

GS(x1, p1 − q
2 ;x2, p2 +

q
2) −→ GS(x1, p1 ;x2, p2) (3.19)

The correlation function 3.17 then reduces into

R(p1, p2) = 1 +

∑
S(−1)S

∫
d4x1d

4x2GS(x1, p1 ;x2, p2)cos(qr̄)∑
S

∫
d4x1d4x2GS(x1, p1 ;x2, p2)

= 1 +

∑
S(−1)S

∫
d4r gPS(x, q)cos(qr)∑

S

∫
d4r gPS(r, q)

(3.20)

Although the 3.20 seems to give a one to one relation between emission function describing

the source and the correlation function as its 4-dimensional Fourier transform we are in reality

not able to fully reconstruct the emission function gPS(r, q) from the correlation function

R(p1, p2). The reason for it is the mass-shell constrain of the 4-vector q = p1 − p2. Since

both p1 and p2 are 4-momenta of real particles the q is also on the mass shell. This can be

expressed by q0 = βq with β = P /|P |. Introducing this constrain into 3.20 we obtain

R(p1, p2) = 1 +

∑
S(−1)S

∫
d3r cos(qr)

∫
dt gPS(r + βt, q)∑

S

∫
d4r gPS(rq)

= 1 +

∑
S(−1)S

∫
d3r SPS(r, q)cos(qr)∑

S

∫
d3r SPS(r, q)

.

(3.21)

The information that can be obtained from the correlation function is then only about relative

emission function

SPS(r, q) =
∫
dt gPS(r + βt, q). (3.22)

The deconvolution of the r and t can be done employing some external model of the emission

function GS(x1, p1 ;x2, p2).

3.1.2 Bertsch-Pratt coordinate system

In the femtoscopic analyses of the correlation function R(p1, p2) = R(P, q) the standard

global Cartesian system x-y-z is not optimal. The most common and also the only one used

throughout this work is a Bertsch-Pratt (out-side-long) coordinate system[105, 106, 107, 108,

109]. The system is connected to the geometry of the emitted pair and takes advantage of

the prominent directions of the heavy ion-collisions, beam and transverse direction. The

three main Cartesian axis are defined, as shown in the Figure 3.2, in the following way: The

longitudinal (long) axis is parallel to the beam direction (in the laboratory frame usually

denoted z). The out axis is chosen parallel to the pairs transverse momentum P , thus is
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Figure 3.2: Bertch-Pratt coordinate system of the pair. Decomposition of q vector of the
pair into the out-side-long coordinate system used in the femtoscopic measurements.

specific for every pair. The side axis is the remaining perpendicular direction. Any spacial

vector v is decomposed as

vlong = vz

vout = (Pxvx + Pyvy)/PT

vside = (Pxvy − Pyvx)/PT ,

(3.23)

where PT =
√
P 2
x + P 2

y .

A most common reference frame for femtoscopic analyses of identical particles is the lon-

gitudinally co-moving system (LCMS) of the pair. This frame is boosted from the laboratory

rest frame along the beam (long) direction so that the Plong of the pair vanishes. In a case of

correlation of interacting particles, as is the case of this study, the two particle wave function,

which describes their interaction, is defined in the pair’s rest frame (CMS). The CMS frame

is obtained from LCMS by an additional boost in the out direction so that also the Pout = 0.

3.1.3 Gaussian parametrization

The correlation function R(P, q) carries information about the 3-dimensional shape of the

relative emission function SPS(r, q). In practical analyses the emission function as well as

the correlation function are parametrized to characterize its main spacio-temporal features.

The easiest way is to describe a single-particle emission function GS(x, p) in a Wigner rep-
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resentation by a Gaussian approximation[110, 109]. In the most general case:

GS(x, p) = Nexp

[
−1

2
Aµν(p)(x

µ − x̄µ(p))(xν − x̄ν(p))

]
. (3.24)

The two-particle emission function is then

GS(p1, x1, p2, x2) = Ga
S(x1, p1)G

b
S(x2, p2). (3.25)

Such a parametrization has multiple advantages. As the equation 3.21 shows a Gaussian

source function leads, for identical non-interacting particles,to a Gaussian correlation func-

tion which greatly simplifies analyses. Also, any fluctuations in collision parameters and par-

ticle production will naturally, via central limit theorem, lead to Gaussian shapes. Although

it’s know that real sources deviate from Gaussian[111] the obtained parameters characterize

well the main features of the source using minimal number of parameters.

As shown in [109] due to symmetries of the system most of the cross terms are forbid-

den with the exception of a cross term between xout and time. For radially symmetrical

system also offsets in the side and long direction are zero. We are then left with four RMS

radii(σout, σside, σlong,∆τ) and only two offsets (x̄out, t̄) to characterize the single-particle

emission function:

GS(x, p) ∼ exp

[
−(xout − x̄out − Vout(t− t̄))2

2σ2out

−(xside)
2

2σ2side
−

(xlong)
2

2σ2long
− (t− t̄)2

2(∆τ)2

]
, (3.26)

where Vout is a transverse velocity of the source. The relative emission function SPS(r,k),

according to 3.22, is then

SPS(r,k) ∼ exp

[
− [rout − 〈r〉out]2

4γ⊥R
2
out

−
r2side
4R2

side

−
r2long
4R2

long

]
R2

out =
1

2

[
σ2a,out + σ2b,out + (Va,out − V⊥)

2(∆τa)
2 + (Vb,out − V⊥)

2(∆τb)
2
]
,

R2
side =

1

2

[
σ2a,side + σ2b,side

]
, R2

long =
1

2

[
σ2a,long + σ2b,long

]
,

〈r〉out = x̄a,out − x̄b,out − V⊥(t̄a − t̄b)

(3.27)

where V⊥ is a transverse velocity of the pair in LCMS frame and γ⊥ ≡ (1− V⊥)
−1/2. Nat-

urally, for identical particles the mean values of the relative shift in the out direction will

be 〈r〉out = 0. In 3.27 the information about lifetime ∆τ of the source is folded into the

measured Rout radii. If the two single particle radii σout and σside are approximately the
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same we can estimate the life time of the source from difference between measured Rout and

Rside

R2
out −R2

side ≈ (Vout − V⊥)
2(∆τ)2. (3.28)

For non-interacting identical particles whose correlation function is determined solely

by quantum symmetrization effects, ie. the correlation function is Fourier transform of

the emission function, the final correlation function(in the LCMS frame) resulting from

distribution 3.27 according to 3.21 is then:

R(q) = 1 + exp
[
−q2outR2

out − q2sideR
2
side − q2longR

2
long

]
. (3.29)

3.1.4 Non-identical interacting particles

If a final state interaction is present the Bethe-Salpeter amplitude 3.6 is

ψ
S(+)
q̃ (r) = eiq̃r/2 +∆ψ

S(+)
q̃ (r), (3.30)

with the correction ∆ψ
S(+)
q̃ (r) derived from 3.4:

∆ψ
S(+)
q̃ (r) =

√
P

2π3i
e−iPx(1+Pq/P 2)/2

∫
d4k

eikxfS(p1, p2 ; k, P − k)

(k2 −m2
1 + iε)((P − k)2 −m2

2 + iε)
(3.31)

Similarly as in section 3.1.1 we can separate the motion of the center of mass in 3.7 into a

factor exp[iP (X − X ′)] and using the smoothness approximation we can neglect all q̃ with

regard to p1, p2. This allows to rewrite 3.7 in terms of the emission function GS 3.10:

(2π)6γ1γ2
d6σ

d3p1d3p2
=
∑
S

∫
d4x1 d

4x2GS(x1, p1 ;x2, p2)
∣∣∣ψS(+)

q̃ (r)
∣∣∣2

=
∑
S

∫
d4r gPS(r, q̃)

∣∣∣ψS(+)
q̃ (r)

∣∣∣2 . (3.32)

In the CMS of the pair (P = 0, q̃ = {0,k∗}, r = {t∗, r∗}) the two-particle wave function

ψ
S(+)
q̃ (r) can be, at low q, replaced with a stationary solution of the scattering problem

ψS
−k∗(r∗):

(2π)6γ1γ2
d6σ

d3p1d3p2
=
∑
S

∫
d3r∗ SPS(r

∗,k∗)
∣∣ψS

−k∗(r∗)
∣∣2 . (3.33)
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For a short range interaction this solution asymptotically approaches at large r∗ = |r∗| a
superposition of the plane and outgoing spherical wave.

ψS
−k∗(r∗) = eik

∗r∗
+ fS(k∗)

eik
∗r∗

r∗
, (3.34)

considering that the interaction is dominated by the s-wave at sufficiently low k∗ = |k∗|.

If a long-range Coulomb interaction is present it modifies both, the incoming plane and

the outgoing spherical wave [112, 113]:

ψ−k∗(r∗) = eiδc
√
Ac(η)

[
eik

∗r∗
F (−iη, 1, iξ) + fc(k

∗)
G̃(ρ, η)

r∗

]
. (3.35)

Here ρ = k∗r∗, ξ = k∗r + k∗r∗ = ρ(1 + cosθ∗), η = (k∗a)−1, a is a two-particles Bohr radius,

and fc(k
∗) = f(k∗)/Ac(η). The δc = argΓ(1 + iη) is a Coulomb s-wave shift and

Ac(η) =
∣∣∣ψCoul

−k∗ (0)
∣∣∣2 = 2πη

[
e2πη − 1

]−1
(3.36)

is the Gamow factor; square of the non-relativistic Coulomb wave function at r∗ = 0.

F (α, 1, z) is confluent hypergeometric function and G̃(ρ, η) is a combination of regular and

singular s-wave functions (see [113] for details).

The equation 3.35 shows a very important features which is a corner stone of the analysis

in this thesis. The information about the space-time shift r∗ between the emitted particles

enters through terms odd in k∗r. The correlation function is then sensitive to the angle θ∗

between k∗ and r∗. As an example, in a case of a dominant Coulomb FSI interaction in the

3.35 the correlation function can be evaluated according to 3.32 and 3.16:

R(p1, p2) = Ac(η) [1 + 2〈r∗(1 + cos θ∗)/a〉+ . . . ] . (3.37)

The average 〈〉 is meant in a sense of integration over relative emission function gPS(r
∗,k∗)

and summation over spins states S, as in 3.32. It has been first pointed out in [114] that this

can be used to access information about asymmetry 〈r∗〉 in the particle emission between

two particle species. In a case of radially symmetric system, as considered before in 3.27,

the shift r∗ in the CMS is:

〈r∗〉out = γ⊥〈r〉out = γ⊥(∆x̄out − V⊥∆t̄), 〈r∗〉side = 0, 〈r∗〉long = 0, (3.38)

with average shift possible only in the out direction. The sensitivity of the correlation function

on the product k∗r∗ can be imagined in a classical analogy. If the vector k∗ has the same

direction as r∗ the two particles move away from each other in the center of mass frame
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of the pair. On the other hand if the vectors k∗ and r∗ have opposite direction they move

initially toward each other after they are emitted. The second case gives the two particles,

under classical considerations, effectively more time to interact, thus making the correlation

stronger.

Experimentally we cannot measure the sign of k∗r∗ directly since we cannot directly

observe the direction of r∗. Only k∗ is directly measurable. What we can do is to use other

measurable vector such as the total momentum of the pair P and test if the strength of the

correlation function varies with direction of such vector. If it does this means that there

exists a relation between the vectors direction and direction of the r∗. A straightforward

method to test if there exists a shift in the average emission point between particle-species

in a given direction was proposed in [114]. The the data is split into to two parts depending

on a sign of product k∗P and two correlation functions are created: C+(k
∗) for pairs with

k∗P > 0 and C−(k
∗) for those with k∗P < 0. The ratio of the two correlation functions

C+/C− is then sensitive to the average shift 〈r∗〉. Since in heavy-ion collisions the symmetry

constrains usually allow only shift in the out direction(3.38) the two correlation function

C+,C− are usually constructed with respect to the vector Pout.

3.2 Experimental correlation function

The two-particle correlation function R(p1, p2) 3.16 is defined as a ratio two-particle inclu-

sive spectra - one including the FSI and one without the FSI. The experimental correlation

function CK(q), where K = P/2, is constructed as a normalized ratio of two-particle distri-

butions as function of their relative momentum q:

CK(q) = N
A(q)

B(q)
. (3.39)

Here A(q) is two-particle distribution obtained from individual single events, and B(q) is a

two-particle distribution obtained by the so called “event mixing procedure”. In the event

mixing procedure, pairs for the distribution in the denominator are created so that each

particle in the pair comes from different event. In this way the obtained two-particle distri-

bution should be similar to A(q) less the FSI effects, assuming that FSI correlation effects

are the only thing in which two events differ (at least in the region of low q). This is rather

strong assumption and more on this will be discussed in the Section 6.2.3.

The correlation function can be arbitrarily normalized, but usually N is chosen so that

the correlation function CK(q) approaches 1 for a large q. However since the experimentally

constructed correlation function according to 3.39 usually contains not only correlation of FSI

origin, but often also other correlations( such v2 correlation of dynamic origin), it’s a common

practice to select a limited normalization region where the effects of FSI are negligible, and
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yet with q low enough not to contain the dynamic correlations. This normalization region is

usually at q ∼ 100− 500 MeV/c.

3.2.1 The λ parameter

The experimentally measured correlation functions 3.39 is in most cases by a significant

factor smaller then the theoretical prediction 3.16. This leads to introduction of a λ factor

so that

CK(q) = 1 + λ[R(p1, p2)− 1]. (3.40)

The λ then regulates the absolute magnitude of the correlation function. In the case of the

Gaussian source such as in 3.29 the measured correlation function will change into:

CK(q) = 1 + λ exp
[
−q2outR2

out − q2sideR
2
side − q2longR

2
long

]
. (3.41)

The λ parameter may be of multiple origins. Initially the λ was called the “incoherence

factor” as a coherent emission of fraction λ of pions would cause corresponding decrease in

the correlations function [110]. Other cause of λ < 1 in experimental correlation function is

a contamination of used pairs with misidentified particles and admixture of particles coming

from long-lived resonances and weak decays which occur close to primary vertex and their

decay products are hence misidentified for primary particles. These purity effects can be

either included into the λ parameter during fitting, such as in 3.41, or the correlation function

can be corrected for it by extracting the purity separately prior the construction of the

correlation function.

The predictions of coherent emission of pions was tested separately via three particle

correlations [115, 116] and obtained results point to fully chaotic source of pions [117]. The

value λ 6= 1 in pion-pion HBT then can be taken as a measure impurities of the used pionic

sample .

3.2.2 Spherical harmonics decomposition

The measured 3-dimensional correlation function C(p1, p2) = CK(k∗) cannot be viewed

directly. To visualize the results it’s usual to present only 1-dimensional projections along

one of the Cartesian (out,side,long) coordinates with the remaining two direction integrated

out over the correlation region. In the case of measurements of emission asymmetries

between non-identical particles the the most common approach is to use the C+/C− ratio

as explained in Section 3.1.4. This representation of data has its limitation as it doesn’t

allow full visual inspection of the data. Important features, such as the degree of non-

Gaussianess can missed out or significantly distorted. In the case C+/C− the strength of the

signal depends on the actual shape of the distribution of cos θ∗ in the k∗r∗ product which is
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affected by the acceptance of the detector.

A novel technique of representing the correlation function via only few 1-dimensional

plots has been suggested in [118]. This method relies on a decommission of the angular part

of the correlation function into spherical harmonics. The Cartesian components of the k∗

vector are related to the spherical coordinates by

k∗out = k∗ sin θ cosϕ, k∗side = k∗ sin θ sinϕ, k∗long = k∗ cos θ, (3.42)

with k∗ = |k∗|. The measured correlation C(k∗, θ, ϕ) is represented as a series of the k∗-

dependent Al,m(k∗) coefficients of the decomposition

C(k∗, θ, ϕ) =
√
4π

∞∑
l=0

l∑
m=−l

Al,m(k∗)Y ∗
l,m(θ, ϕ), (3.43)

where Yl,m are the spherical harmonics. The individual coefficients are obtained as

Al,m(k∗) ≡ 1√
4π

∫
dϕd(cos θ)C(k∗, θ, ϕ)Yl,m(θ, ϕ). (3.44)

The equation 3.43 deals with continuous correlation function. Experimentally we construct

the correlation function in finite bins with their size depending on available statistics. For

the use of spherical decomposition we usually use bins in cos θ,and ϕ. To account for the

effect of the finite binning the formula 3.43 has to be modified:

C(k∗, cos θi, ϕj) =
√
4π

∞∑
l=0

l∑
m=−l

Fl,m(∆ϕ,∆cos θ, cos θi)Al,m(k∗)Y ∗
l,m(cos θi, ϕj). (3.45)

The Fl,m(∆ϕ,∆cos θ, cos θi) is the correction factor for finite binning for the {i, j}-th bin of

the angular part of the correlation function with the bins’ width ∆cos θ and ∆ϕ. As shown

in [119] the correction factor is then

Fl,m(∆ϕ,∆cos θ, cos θi) =
sin(m∆ϕ/2)

m∆ϕ/2

1

∆cos θPl,m(cos θi)

∫ cos θi+∆cos θ/2

cos θi−∆cos θ/2
Pl,m(cos θ)d(cos θ),

(3.46)

and the 3.44 for calculating the Al,m(k∗) can be approximated by

Al,m(k∗) ≈ ∆ϕ∆cos θ√
4π

∑
i,j

C(k∗, cos θi, ϕj)Yl,m(cos θi, ϕj)

Fl,m(∆ϕ,∆cos θ, cos θi)
. (3.47)

The representation 3.45 of the correlation function may not seem to be of a big advantage
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as, at first sight, wee would visualize the correlation function instead of multitude of the

1D Cartesian slice by a multitude of complex spherical projections Al,,m(k∗). The major

advantage of the spherical projections shows up when we consider symmetries and restrictions

constraining the measured correlation function. Extensive study of the symmetries of the

correlation function for both identical and non-identical particles can be found in [119]. For

the scope of the analyses in this thesis it important to realize that we expect basically only

two coefficients to carry relevant information about the particle-emitting source. First we

expect that with increasing l the coefficients are statistically diminishing if the expansion

3.45 is to have a sense at all. For a correlation function of non-identical particles measured

symmetrically at mid-rapidity region we expect all Im[Al,m] and all terms with (l +m) odd

to vanish due to the symmetries. From all the terms with l = 0, 1 which will be statistically

accessible in this thesis we are left with only two: A0,0, and A1,1. While A0,0 is the angle-

averaged correlation function C(k∗) is sensitive to the overall size of the source, the A1,1 is

sensitive to the shift of the average emission points of the two particles 〈r∗〉out, as discussed
in the Section 3.1.4.

3.3 Heavy ions collision models and femtoscopy

Although the Gaussian parametrization 3.27 seems to give a simple description of the source

in terms of only few radii that, especially in the case of identical non-interacting particles 3.29,

the physics interpretation may not be so straightforward. The measured Rout, Rside, Rlong

can not be simply identified as the sizes of the whole source. From the equation 3.32 we see

that the correlation function is determined by the two particle emission function gPS(r, q)

3.11 which reduces due to the mass-shell constrain into SPS(r, q) of 3.22. As this relative

emission function depends only on r we see that what we measure is the size of region in

the source that can produce two particles with close velocities at a given pair momentum

P . This region is often called the “homogeneity region” and it’s sized the “homogeneity

length”. In a scenarios with strong correlation between the particles momenta and their

emission coordinates, such as the case of strong collective expansions, the size of the actually

measured homogeneity region can be significantly smaller that the size of the whole source.

The change(decrease) of the measured source size with the PT , or more commonly mT of

the pair, is typical for the source undergoing rapid expansion.

For this reason it is important not only to measure the femtoscopic sizes of the source, but

also to compare to models of the heavy-ion collisions that are able to produce the momenta

of particles together with their freeze-out space-time coordinates. For the scope of this thesis

two models are of main interest: Blast wave [74] and HYDJET++ [120]. With these models

we can study effects of the underlying dynamics of the system on the measured homogeneity

regions.
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3.3.1 Blast wave parametrization

We know, and partly have also shown in Section 2, that many features of the heavy-ion

collisions can be reproduced with the help of models based interacting bulk of matter de-

scribed by hydrodynamics. However so far no model(hydrodynamic or transport) was able to

fully describe all the observed features, including femtoscopic results, at the same time with

physically reasonable initial conditions [109]. To circumvent this problem and facilitate the

study of the freeze-out conditions of system the so called “Blast wave model” was developed.

Although called “model” the blast wave is a parametrization that aims to describe with a

minimal set of parameters the configuration of bulk of the system at the freeze-out, providing

both the four-momenta and four-coordinates of the particles. Such a parametrization allows

to calculate bulk properties such as spectra, v2 and HBT radii at the same time and also from

the measured values of these observables quickly infer parameters of the model. Although

the functional form of he model, as will be described later, is based on the hydrodynamic

calculation, it must be stressed that the blast wave model merely tells us what the final

state configuration, or one of the possible ones, of the source is in order to explain the

measured data. However this model does not tell us whether this configuration is physical

in the sense of initial conditions, evolution of the system and hadronization. Compared to

full hydrodynamics or transport simulation this model is fast to calculate and can thus be

efficiently used for fitting and study of the main features of the soft sector of the produced

particles.

There are more blast wave parametrization available, but in this work by “blast wave”

is meant parametrization developed by Lisa and Retiere in [74] based on hydrodynamical

calculations [90]. This parametrization utilizes eight independent parameters: T , ρ0, ρ2, Ry,

Rx, as, τ0, and ∆τ . The source is described as a longitudinally boost invariant cylinder

with a ellipsoidal transverse shape. The longitudinal boost invariance is represented by

assumption of freeze-out occurring with a Gaussian distribution in longitudinal proper time

τ =
√
t2 − z2:

dN

dτ
∼ exp

(
−(τ − τ0)

2

2∆τ2

)
. (3.48)

The τ0 parameter then corresponds to a proper average emission time, and ∆τ sets the

emission duration.

In the transverse plane the source is considered to consist of individual particle-emitting

cells weighted according to

Ω(r, φ) = Ω(r̃) =
1

1 + e(r̃−1)/as
, (3.49)
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where

r̃ =

√
(r cos(φs))2

R2
x

+
(r sin(φs))2

R2
y

. (3.50)

is a “normalized elliptical radius” defining one elliptical sub-shell of emitters. Each of the

of cells is emitting particles with a thermal distribution given by the global temperature

T . To describe the collective behavior of the system the cells are boosted in the direction

perpendicular to the surface (under angle φb). Based on the hydrodynamical calculations this

version of blast wave uses a linear flow profile where strength of the flow increases linearly

with the elliptical radius r̃. To describe the measured values of v2 the strength of the flow

must depend also on the angle φb so that the final flow rapidity is

ρ(r, φs) = r̃ (ρ0 + ρ2 cos(2φb)) . (3.51)

Combining 3.48-3.51 with the assumption of local thermal emission and longitudinal

boost invariance (vL = z/t) gives a single particle emission function, analogous to the one

used in 3.25:

GS(x, P ) = mT cosh(η − Y )Ω(r, φs)e
−(τ−τ0)

2

2∆τ2
1

eP ·u/T ± 1
. (3.52)

Here the 1
eP ·u/T±1

is a Boltzmann factor describing emission of the particle with four-

momentum P from a local thermalized source moving with four-velocity u. The source

four-velocity is given by the transverse rapidity profile 3.51 and longitudinal boost invari-

ance by which η = 1
2 ln [(t+ z)/(t− z)]. In cylindrical coordinate:

uµ(x) = (cosh η cosh ρ(r, φs), sinh ρ(r, φs) cosφb,

sinh ρ(r, φs) sinφb, sinh η cosh ρ(r, φs)) (3.53)

and

Pµ = (mT coshY, pT cosφp, pT sinφp,mT sinhY ) , (3.54)

where pT is transverse momentum, Y - rapidity, and φp - azimuthal angle of the emitted

particle.

The blast wave model is quite simplistic and it has been pointed out that it misses some

important features such as a relation between the time of emission and position r̃ [122]

which is present in full hydrodynamic calculations. Despite these shortcomings the model

is able to quite well describe simultaneously measurements of spectra, v2, and HBT radii

at different centralities and collisions energies. Example of such fit to the data is shown in

Figure 3.3. In the case of femtoscopic measurements we can use the model to understand how

the dynamically induced correlations between particles momentum and emission coordinates

influence the observed homogeneity lengths. In the Figure 3.4 is shown calculation of the
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distribution of the emission points for three particle species: pions, protons and kaons emitted

with the same velocity. This means q = 0 if the particles are paired. As can be seen due

to the radial flow the particles emission point and momenta are correlated so that particles

with higher momenta (mass) are emitted more on the outside of the source. The transverse

expansion included in the model hence leads to a decrease of the homogeneity region and

also, as shown in the Figure 3.4 by the dashed line, to the shift of the mean position of

homogeneity region in the out direction. The one to one connection between the emission

point and momentum is smeared by the thermal part of the emission function. The thermal

smearing leads to a an increase of the source as the thermal motion competes with the radial

flow. The effect is more pronounced for low mT particles such as pions. Hence with the help

of blast wave model we can use the measured femtoscopic radii and shifts in the emission to

study the different dynamic scenarios of the system.
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3.3.2 HYDJET++

HYDJET++ [120] is a further development of its predecessors: the HYDJET [123] and

FASTMC [124, 125] Monte Carlo generators. It simulates Au+Au collisions as a superposi-

tion of soft, hydro-type state, and hard multi-parton fragmentation. For the work presented

in this thesis we neglect the hard processes option implemented in the model because of a

small influence of the high-pt part processes on the femtoscopy data at RHIC energies and

use the soft part only. Later is based on a hydrodynamical parametrization of the initial

state providing the thermal hadronic state generated on the chemical and thermal freeze-out

hyper-surfaces represented by a parametrization of relativistic hydrodynamics with given

freeze-out conditions [124, 125]. This parametrization is in principally similar to the one de-

scribed in the section above. The mean multiplicity of hadron species crossing the space-like

freeze-out hyper-surface is calculated using effective thermal volume approximation. Let us

note that unlike FASTMC in HYDJET++ the value of effective volume of the fireball Veff

is generated for each event separately. Veff is proportional to the mean number of partici-

pating nucleons at the considered centrality (impact parameter b) which is calculated from

the generalization of Glauber multiple scattering model to the case of independent inelastic

nucleon-nucleon collisions.

The model includes not only longitudinal, radial and elliptic flow effects, but also the

decays of hadronic resonances. The two- and three-body decays of the resonances with

branching ratios are taken from the SHARE particle decay table [126]. This model allows

to study the effects of residual correlations coming from particle decays, and resonances or

to study influence of the decays on the relative space-time shift in the emission function of

non-identical particles.

3.4 Femtoscopic results in heavy-ion collisions

As mentioned in the Section 2.1 the system created in the relativistic collisions of nuclei

undergoes multi-staged evolution. The complex dynamics of the system imprints in the

nontrivial space-time structure of the final source at the kinetic freeze-out. The extent and

duration of the source carries information about the underlying physics governing the dy-

namics of the system and the femtoscopic measurements are the most direct way to measure

such space-time characteristics.

Early theoretical predictions[107, 127, 128], which considered first order transition be-

tween the deconfined colored medium and hadronic gas stage, sparked even greater interest

in the HBT measurements. It was predicted that the increased entropy associated with

deconfined color degrees of freedom will lead to increased spacial extent of the source and

prolonged duration of the particle emission. This is expected to manifests in a significant
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increase of the Rout/Rside ratio. The HBT measurements are therefore considered to be a

good candidate for diagnosing the creation of the quark-gluon plasma and its phase tran-

sition. The measurements of spacio-temporal characteristics of the heavy-ion collisions via

2
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E895 E866 CERES NA44 WA97 WA98 PHENIX PHOBOS STAR

Figure 3.5: Collected data set of published mT dependencies of pion HBT radii near mid-
rapidity from Au+Au (Pb+Pb) collisions. Centrality selection is roughly top 10% most
central collisions. Figure from compilation [109].

two-particle correlations has been an integral part of the heavy-ion physics program and has

developed throughout experiments at AGS[129, 130, 131], SPS[132, 133, 134, 135, 136, 137],

and RHIC[111, 138, 139, 140, 141] into a high precision tool.

In Figure 3.5 is shown a compilation of results from [109] on measured Gaussian radii

of pion sources by different experiments for their largest colliding system and for the most

central collisions. It is noticeable that systems at all collision energies show similarity in mT

evolution of the radii. The high statistics data of RHIC experiments allow to measure themT

dependence of HBT radii with high precision for different centralities, as shown in Figure 3.6.

The data of Figure 3.6 show similar mT dependence for all centralities. The falling of HBT

radii with mT is a result of correlation in x − p space of the emitted particles. A most

plausible explanation for such a behavior comes from flow dominated models[142, 74, 143]

where expansion creates correlations in both transverse and longitudinal direction.

It should be also noted that in the shown centrality dependence in Figure 3.6 and energy

dependence in Figure 3.7 we do not observe any sudden change of behavior which would

signalize an onset of different physics that could be associated with a first order phase

transition from QGP. If HBT measurements are to disclose a phase transition into a new

form of matter it is natural to expect same change of behavior of femtoscopic observables

when collision energy at which the QGP is formed. Figure 3.7 present the excitation function

of HBT radii and Rout/Rside for central collisions at low kT bin of 〈kT 〉 0.2− 0.3 GeV/c. This
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low kT bin contains the least amount of the dynamic x − p correlations and the measured

homogeneity length can be taken as a measure of the whole source. As wee can see the

Rout in which is convoluted information about source emission duration shows almost no

change with energy while Rside and Rlong show an initial decrease at small collision energies

with small increase later. Mainly, the closely watched Rout/Rside ratio shows only very little

variation with energy of the collision as well as with centrality without any sudden increase.

3.4.1 RHIC HBT “puzzle”

For the first time, at RHIC collision energy, a substantial part of obtained results can be

explained by ideal hydrodynamics models[144]. This even led to term a “perfect liquid” for

the state of matter created at RHIC. The ideal hydrodynamic calculations are extremely

successful in reproducing spectra and elliptic flow, but they fail in reproducing fully the

available high precisions femtoscopic measurements. The data shown in Figure 3.6 show

a decrease of the radii with mT and the same behavior is expected from hydrodynamic

calculation which contain collective expansion. Although, as shown in Figure 3.8, the actual
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hydrodynamical and hybrid model calculations. Compilation from [109].

hydro calculations can predict the general behavior of the radii they are unable to reproduce

at the same time all the radii and the Rout/Rside ratio. The measured radii are smaller than

those predicted by ideal hydrodynamics. In particular, the Rlong is abut 50% smaller than the

calculated one. Also, the ratio Rout/Rside is observed to be ∼ 1 while hydrodynamics gives

Rout/Rside ≈ 1.3− 1.5. This, together with previously mentioned almost constant behavior

of Rout/Rside with the collision energy, is often called the ”HBT puzzle” [145, 146, 109].

Resolving of the HBT puzzle has been an ongoing task. The latest theoretical results and

simulations suggested that the explanation could be an interplay of multiple components [122,

147] in which important role is played by viscous hydrodynamics[73], and proper initial

conditions. Calculations where hydrodynamic evolution with thermalization is initialized

very early, at about 0.5 − 1.0 fm/c and with initial flow, achieve better description of the

measured data[122].

3.4.2 Non-identical particle correlations

The above picture of the system undergoing collective expansion in longitudinal and trans-

verse direction has been drawn from femtoscopic measurements of identical pions only, using

their bosonic quantum statistics. The apparatus of correlation measurements in Section 3.1.4

allows to utilize not only identical pions, but also pairs of particles of different species. It

is important to know whether similar conclusions about collective behavior of the system
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can be reached from other particle species as well. Femtoscopic measurements with different

species can be used to complement the measurement with pions and give a more complete

and detailed picture of the dynamics of the heavy-ions collisions. Recent high statistics data
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Figure 3.9: mT dependence of Rinv for different particles. Figure from [148].

collected at RHIC has allowed to carry out femtoscopic analyses with precision that was

unreachable before and for particle pair types that were measured for the first time. In

Figure 3.9 is presented mT dependence of 1-dimensional radii (Rinv=Rout=Rside=Rlong) for

different measured pairs of particles with close mass. The data shows a similar mT fall of

radii as for identical pions. It is of particular importance to note that these measurements

include systems with different final state interaction and different systematical uncertainties.

Using different particle species one can “turn on/off” Coulomb FSI and/or quantum statis-

tics effects. For example, in the case of K0
S −K0

S and p(p̄)−Λ(Λ̄) the Coulomb interaction is

absent and in the latter case there is also no quantum statistics. The message from common

scaling in Figure 3.9 is strengthened when considering different systematics involved in each

of these measurement.

Femtoscopic measurements with non-identical particles are not only sensitive to the size

of the system, but also to the relative difference in the space-time position of the emission of

the two particle species, as described in Section 3.1.4. Models that include collective expan-

sion predict a relation between the average emission position and the mass of the particle

such as that particles with higher mT are emitted more on the outside of the expanding

fireball [74]. This effect hence increases with a mass difference within the measured particle

pair. Figure 3.10 shows that in heavy-ion collisions the average emission points of particles

with different mass, such as pions, kaons and protons, are significantly shifted with respect to

each other [150, 149]. The species-independence of themT scaling of HBT radii together with
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Figure 3.10: Comparison of the shift of the average emission point between (a) pion-kaon, (b)
pion-proton and (c) kaon-proton. The real data (◦) are compared with model predictions:
blast wave parametrization [74](thin solid line) and RQMD(thick solid line). A space 〈∆rout〉
and time 〈∆t〉 component of the shift are presented by dotted and dashed line respectively.
The results of the fit to the RQMD simulations are shown as ? symbols. Figure from [149].

extracted emission asymmetries among the particles provide an independent confirmation of

a transversely expanding particle source in heavy-ion collisions.
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Chapter 4

The STAR experiment at

Relativistic Heavy-Ion Collider

Brookhaven National Laboratory (BNL) at Long Island has been for six decades on a fore-

front of nuclear and particle research. Many important discoveries were achieved at BNL

and five of them have actually been awarded a Nobel Prize. Out of these five, three were

earned for a research conducted at an Alternating Gradient Synchrotron (AGS). The AGS is

an accelerator build at BNL in 1960 and it is a first machine that employs a strong focusing

of the particle beam. This concept [151] allows to focus the beam in both the horizontal and

vertical plane at the same time by successively alternating inward and outward magnetic

field gradients. This breakthrough concept helped to overcome limitations of the previous

Cosmotron accelerator and the AGS became until 1968 the highest energy accelerator in the

world.

Since in experiments with single beam and fixed target most of the energy stored in the

beam is carried away in a form of the kinetic energy of the whole colliding system, it is of

advantage to use two intersecting storage rings to accelerate and collide particles. A project

called Relativistic Heavy Ion Collider(RHIC) to build such an accelerator for colliding two

beams of heavy nuclei was proposed in 1984 for which the older AGS would serves as an

injector. The construction was started in 1991 and first Au+Au collisions were delivered in

summer of 2000 at energy of
√
sNN=62 GeV. In 2001 RHIC has reached its designed nominal

energy of
√
sNN=200 GeV. Since then the RHIC is the only accelerator facility in the world

which is fully dedicated to high-energy heavy ion research and continues in the legacy of the

AGS as one of the worlds prime nuclear physics experimental facilities.

55
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4.1 The Relativistic Heavy Ion Collider

The first registered Au+Au interaction in the summer of 2000 has been a result of two decades

of scientific and engineering effort that can be approximately traced back to year 1983 [152]

when U.S. Nuclear Science Advisory Committee (NSAC) suggested that the highest priority

goal for the field of heavy-ion physics is to build an ultra-relativistic heavy ion collider

with energy of E/A & 30 GeV in the center of mass with a broad range of accelerated

nuclei from light species up to uranium. A unique opportunity arose at the same time

when an ill fated Colliding Beam Accelerator (ISABELLE/CBA) project, the 400 GeV on

400 GeV proton collider at Brookhaven, was abandoned in 1981 due to technical problems

with superconducting magnets in favor of, later also canceled, SSC collider (at that time

actually called Desertron). It was proposed to reuse much of the already existing civil

engineering structures and 4He refrigeration system for superconducting magnets, for the

new heavy-ion machines. The Relativistic Heavy Ion Collider (RHIC) was designed [153]

to accelerate nuclei to top energy of 100 GeV/A for A & 200 where a fully developed

mid-rapidity net-baryon free region was expected, and at the same time being able to go

continuously as low as 5 GeV/A with species from almost full periodic table. This design

allows to run p+p and d+A collisions, as well as A+A, and be able to study the onset of new

collective physics with increasing size of the projectiles and collision energy with the same

detectors. Also, the capability of colliding protons has enabled the development of polarized

proton beams for the RHIC spin program.
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Figure 4.2: top: Magnets of the AGS accelerator. bottom: Inside of the RHIC tunnel.

The design of the RHIC facility builds on existing accelerator architecture at BNL. It

utilizes previously build Tandem Van de Graaff (TVDG) Facility, Booster Synchrotron and

the AGS, which already run a heavy ion program of their own since 1986 [154]. The nuclei

undergo multiple stages of acceleration as they pass through the RHIC complex, as shown

in Figure 4.1:

Tandem Van de Graaff was build in he mid 1960s by High Voltage Engineering Corpo-

ration (HVEC), a company founded by J. Van de Graaff himself. It was for many

years the world’s largest electrostatic accelerator. The facility consist of two end-to-

end aligned accelerators that use Pelletron charging system [155]. The Tandems can

provide beams of different types of ions ranging from Hydrogen to Uranium [156]. After

upgrades of both of them and addition of a bypass line [157] each of them can operate

at a maximum terminal voltage of 14 MV and serve as a source of ions for RHIC,

while the other acts as spare or delivers beam to local target rooms for an outside user

program. This setup is key when collisions of unequal species in RHIC are required,

such as d+Au physics program in years 2003 and 2008 [158, 159, 160] when not only

good beam is needed but the whole system has to quickly switch between different

setups.

In the case of Au nuclei [161], the negative ions (Au−1) are produced by a pulsed
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sputter source [162] and accelerated from ground potential to +14MV at the center

terminal of the Tandem. At this point they pass through a thin stripping foil which

predominantly removes 13 electrons creating Au+12. The beam is then accelerated

back to the ground potential and passes through a second stripper foil which removes

electrons to Au+32 or Au+31 charge state before it enters the transfer line.

Heavy Ion Transfer Line (HITL) was completed in 1986 to allow the Tandem Van de

Graaff to serve as a heavy ion source for high energy collisions. Beam with energy of

∼1 MeV/nucleon and typical intensity of 5 × 109 per pulse is transported via ∼840

meters long tunnel from the Tandem to further stage of acceleration that takes place

in AGS Booster. Transport efficiency of the entire line ranges from 80 to 90%.

The Alternating Gradient Synchrotron Booster was begun in 1986 and completed in

1991 with the aim to allow acceleration of ions heavier than Silicon in the AGS [163].

The Booster is 202 m long - less than one quarter the size of the AGS. Because of

high rates of electron pick-up and loss for partially stripped ions in the residual gas

of AGS only fully or almost fully stripped ions can be accelerated in the AGS ring.

Without the Booster only nuclei up to the Silicon can be fully stripped before being

injected to the AGS. Higher energy is needed to strip heavier nuclei with sufficient

efficiency. Booster, because of its superior vacuum, is able to further preaccelerate the

partially stripped nuclei. In the Booster nuclei are accelerated to 101 MeV/nucleon.

After extraction from the booster the beam is passed through a stripper in the Booster

to AGS (BTA) transport line where approximately 60% emerge in charge state Au+77

- state with only two remaining K-shell electrons.

Linear Accelerator (Linac) was build 1960 and is used as a source of protons for the

study of p+p collisions at the experiments. It consists of hydrogen gas ion sources,

radio-frequency quadrupole pre-injector, and nine accelerator radio-frequency cavities

which accelerate the protons along total length of a 150 m. The Linac is capable of

producing up to a 35 milliampere proton beam at energies up to 200 MeV which is

injected into the AGS Booster.

AGS The AGS is filled with bunches of Au+77 ions from the Booster. Four cycles of Booster

with 6 bunches per fill are needed to fill the AGS [161] (note that the circumference

of the Booster is ∼ 1/4 of the AGS). To satisfy the beam intensity requirements of

the RHIC the beam in the AGS has to be rebunched from 24 to only 4 bunches [161].

Each of the these bunches holds number of ions equivalent to one Booster filling and

the bunch then exists throughout the whole RHIC cycle. The four bunches in the AGS

are accelerated to the RHIC injection energy 8.86 GeV/nucleon (γ = 10.52) with an

intensity ∼ 1.5× 109 ions per bunch.
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ATR After extraction from AGS, the bunches are transported to the RHIC via AGS-to-

RHIC Transfer Line (ATR). Final stripping of the last two remaining electrons to

Au+79 state occurs during the transfer. At the end of this line the beam is split and

injected into two counter-rotating beams of the RHIC.

RHIC

The proposal [153] and design [164, 165] of the RHIC was driven by physics objectives of

the heavy-ion experimental program as well as the requirement of utilizing already existing

accelerator infrastructure at the BNL site. The primary requirement, by which RHIC differs

from “typical” hadron collider, is to operate with beams of different energies in order to

connect with previous heavy-ion experiments. Another major requirement non-existent in

other colliders is to provide collisions for non-identical particles species ranging in the mass

from proton to Uranium. For such a task the complexity of magnetic optics dictates a design

based on two essentially separate rings capable of operating at different settings.

The collider consists of two concentric rings of super conducting magnets. Each of the

rings has circumference of 3.8 km. The main component of the collider are 9.7 meters long

superconducting dipole magnets that provide a magnetic field up to 3.5 Tesla. There is total

of 288 such dipoles plus large number of additional magnets used for steering of the beam,

totaling 1740 magnets. The magnets are enclosed in vacuum vessel’s separately for each

ring. These magnets are cooled to a temperature of 4.6 K by liquid Helium. The price of

cooling and keeping the magnets at such a low temperature is the main cost associated with

operation of the RHIC since the cooling system consumes 21 MW of electricity.

As shown in Figure 4.1 the two rings are identified as yellow and blue. The beam in the

blue ring travels in the clockwise direction and counter clockwise in the yellow ring. The

two beams are steered to intersect at 6 crossing points along the ring. Four of these crossing

are actually used for physics experiments . The adoption of the beam transfer from the

AGS to RHIC in the single bunch mode allows considerable freedom in the filling pattern.

The minimum number of bunches is six, if collisions at all interaction points are wanted.

The fewer buckets that are filled, the easier it is to accelerate and keep the beam stable as

there are less intra-beam effects. RHIC can handle a maximum of 360 buckets in each ring,

although it usually runs a factor 3 or 6 fewer. The nominal case with 60 bunches corresponds

to a bunch spacing of 63.9 m. The stored beam lifetime for gold in the energy range of 30 to

100 GeV/nucleon is approximately 10 hours. The top kinetic energy is 100+100 GeV/nucleon

for gold ions. The operational momentum increases with the charge-to-mass ratio, resulting

in kinetic energy of 125 GeV/nucleon for lighter ions and 250 GeV for protons. The collider is

designed for a Au+Au luminosity of about 2×1026cm−2s−1 at top energy. The luminosity is

energy dependent and decreases with the operating energy. For lighter ions it is significantly
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higher reaching 1× 1031cm−2s−1 for p+p collisions.

4.2 STAR experiment

Figure 4.3: Schematic view of the STAR detector.

The STAR stands for Solenoidal Tracker At RHIC [166, 167]. It is one the two large

detector systems (together with PHENIX) constructed at the RHIC collider facility. It was

designed [168] as a multi-purpose detector with the aim to measure hadronic observables

over a large solid angle and to study global observables on an event-by-event basis. The

versatility of the STAR detector is of a great importance as it is unlikely that there is

any single definitive signature for the QGP. It is essential to measure multiple observable

signals and build a self-consistent description of the matter created at RHIC; it’s properties,

signatures of the phase transition and space-time evolution of ultra-relativistic heavy ion

collisions.

The baseline configuration of the STAR detector as it was set up for Run-4 (2004) is shown

in Figure 4.3. It is a system of concentric subdetectors inside of a large room-temperature

solenoidal magnet [169]. The magnet creates uniform field of 0.5 T that allows to measure

particle momenta from the curvature of the tracks.

For collisions that occur at the center of the detector the particles first pass trough

the Silicon Vertex Tracker (SVT) [170]. It is a tracking device for low pT particles and

reconstruction of secondary vertexes close to the collision vertex. It is composed of three



4.2. STAR experiment 61

layers of silicon drift detectors. Upgrades after year 2004 include currently installed SSD

detector [171] which provides a fourth layer of the inner tracking system. The SSD is double-

sided strip detector which main aim is to improve extrapolation of tracks from the main

detector towards the SVT. The inner detectors cover a pseudo-rapidity range |η| ≤ 1 with

full azimuthal coverage.

The main tracking detector of STAR is a Time Projection Chamber (TPC) [172, 173]. It

provides tracking for charged particles at mid-rapidity |η| ≤ 1.8. It is also the main detector

used for identification of particles via ionization energy loss (dE/dx). As this is the single

most important detector for the analysis of this thesis it is described in more detail in the

following section. To extend tracking of particles to forward rapidities STAR has installed

radial-drift Forward TPCs (FTPC) [174]. They cover the region of 2.5 < |η| < 4 in pseudo-

rapidity with full azimuthal coverage as well. Since particle identification by dE/dx in drift

chambers is limited to low pT in order to extend the identification to higher pT STAR has

installed in 2009 full barrel Time Of Flight (TOF) detector [175].

STAR also possesses calorimetric capabilities. At present time STAR has two electro-

magnetic calorimeters that are used to detect photons and electrons and are also used for

triggering. The Barrel Electromagnetic Calorimeter (BEMC) surrounds the TPC and covers

|η| < 1 in pseudo-rapidity. In forward section of the detector is positioned The Endcap

Electromagnetic Calorimeter (EEMC). It has full azimuthal coverage and 1 < η < 2 in

pseudo-rapidity. Both of these detectors include high granularity shower-maximum detec-

tors to distinguish high momentum single photons from photon pairs coming from π0 and η

meson decays. The fast response of the calorimeters can be utilized against pileup of tracks

in TPC coming from untriggered events in the high luminosity p+ p collision.

STAR as a multi-purpose detector has a wide range of triggering options given by its

range of fast response detectors [176]. The data used in this work were collected using

trigger signal from three subdetectors. These detectors are Central Trigger Barrel (CTB),

Zero-Degree Calorimeters (ZDC), and Beam-Beam Counter (BBC).

The Central Trigger Barrel (CTB) is an array of 240 scintillator slats which is arranged

around the TPC with coverage |η| < 1. The CTB is used for measuring the multiplicity

of charged particles at mid-rapidity. The Zero-Degree Calorimeter ZDC [177] is a hadronic

calorimeter sensitive to the fragmentation neutrons from the collision. There are two ZDCs

located at ±18m from the detector center with angular acceptance of | sin θ| < 0.002. The

signal from ZDCs is used in the coincidence with the CTB for triggering. Both the ZDC

and CTB can be used for computing the centrality of the event. In p+p collisions the ZDC

cannot be used for its small acceptance. Instead, an addition detector, Beam-Beam Counter

(BBC), is used. The BBC comprises of two scintillator detectors positioned at each side

of the detector at 3.5 m distance from the interaction point covering 3.3 < |η| < 5.0. The

coincidence of the BBC signals is used in Au+Au trigger to better constrain the position of
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the collision vertex.

4.2.1 TPC

Figure 4.4: Diagram of the TPC field cage. Figure from [173].

The STAR TPC [172, 173] is one of the largest detectors of its kind ever built. The

active volume of TPC is a 4.2 m long barrel with 0.5 m inner and 4 m outer diameter.

For collision occurring at the center of the detector TPC covers pseudorapidity interval of

|η| < 1.8 with full azimuthal coverage. The TPC is filled with P10 gas (10% Methane, 90%

Argon) in which traversing particles leave ionization trail. The tracking volume is split in

two, along the beam direction, with a high voltage cathode located at the center of the TPC.

The cathode membrane is held at 28 kV and divides the detector into two separate drift

regions. The electric potential is gradually decreased toward the end cap via chain of 183

precision 2 MΩ resistors on the inner and outer field cage. This ensures the uniformity of

the electric field of 135 V/m in which the ionization electrons drift toward one of the sides

with a velocity of 5.45 cm/µs. The maximum drift time is hence ∼ 40 µs.
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Figure 4.5: Schematics of the read-out part of the TPC endcaps. Figure from [178].

At both ends of the TPC are amplification/readout regions which work on the principle

of Multi Wire Proportional Chambers (MWPC). As shown in the Figure 4.5 there are tree

sets of wires called the gating grid, the ground plane and the anode plane plus an array

of readout pads positioned behind the anode wires. The purpose of the gating grid is to

prevent electrons from untriggered events from entering the amplification region as well as

not to allow any created positive ions to enter the drift region. The wires of gating grid are

positioned 6 mm in front of anode MWPC anode wires and separated by 1 mm. When an

event is triggered the gating grid is set to potential of the surrounding material by do so

it allows the drifting electrons to pass to MWPC. When the grid is in the closed state, the

wires are alternately held at +75 V and −75 V from the equipotential value. The ground

plate terminates the drift region of the TPC and collects the positive ions created in the

amplification region. Once the drifting electrons pass ground plate they continue toward

the anode wires which are held at highest positive potential (over 1 kV). The anode wires

are spaced 4 mm apart and create region with a high gradient electric field. This causes

the electrons to accelerate toward the anode wires and further ionize the surrounding gas

developing a avalanche of electrons reaching the wire. The avalanche at the MWPC anode

wires amplifies the signal 1000 − 3000 times. The positive ions created in the avalanche

induce signal on the readout pads, which then passes through preamplifier/shaper/digitizer

system. Since the signal is induced not only on the closest readout pad, but also on the
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neighboring pads the position of the hit can be reconstructed with higher precision then size

of the pad.

Each end-cap of the TPC is divide into 12 pie-shaped sectors and each of theses sectors

has a different layout in inner and outer part in order to cope with a higher track density at

the inner region. The STAR TPC was specifically designed with the high track density of

the heavy-ion collisions in mind. The total number of readout pads (∼ 137, 000 channels) is

a lot higher that in TPCs used in elementary particle collision experiments allowing to do

efficient tracking and dE/dx identification in an environment of ∼ 2000 tracks.

Particle Identification (dE/dx) and tracking

Figure 4.6: Measured specific ionization (dE/dx) in the STAR TPC. Figure from [173].

When charged particle passes through the active volume of the TPC the energy that it

looses by ionization per the path length dE/dx is characteristic for a particle of given mass,

charge and velocity. The mean energy loss of a particle traversing a matter is described by

the Bethe-Bloch equation:

−dE
dx

=
4π

mec2
nz2

β2

(
e2

4πε0

)2 [
ln

(
2mec

2β2

I(1− β2)

)
− β2

]
. (4.1)

Here z is the charge of the particle, β its velocity, n is the electron density of the target and

I is a mean excitation potential of the target. The energy loss measured by the STAR TPC

together with the theoretical calculations is in Figure 4.6. As can be seen the dependence

of the dE/dx on the velocity of the particle is such that it allows to distinguish particles, at

certain ranges of p, once their momentum has been measured.
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Figure 4.7: Tracks of charged particles from a central collision of two gold atoms at
√
sNN =

200 GeV that were recorded by the Time Projection Chamber of STAR.

In the event of Au+Au central collision, such as the one shown in Figure 4.7, over 1000

charged particles leaves ionization hits in the TPC. The individual hits are recorder and later,

during reconstruction, the paths of individual particles must be deduced and separated from

each other by grouping the hits into the respective tracks. The momentum of the passing

particles is calculated from the curvature of the tracks in the magnetic field of the magnet.

The precision of the momentum measurement depends on the transverse momentum of the

track. The higher is the pT of the particle the straighter is the track in the TPC and it is

hence harder to measure the curvature of the track. On the other hand the low pT particles

have higher ionization loss and loose significant part of their energy as they pass through

the TPC gas which significantly distorts the helical shape of the track. The low pT particles

also traverse only small part of the volume of TPC thus leaving smaller number of hits from

which the track can be reconstructed. Typical resolution for majority of detected particles

is ∆pT /pT ∼ 2− 4%.
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Chapter 5

STAR Silicon Vertex Tracker

To extend STARs capabilities to the low pT region a Silicon Vertex Tracker (SVT) [179, 180,

181] is installed as the innermost detector in the mid-rapidity region. The SVT detector

not only extends the detectors acceptance for low pT phenomena, but it also enhances the

capabilities of STAR detector in areas where the TPC performance is improved by combining

the SVT and TPC measurements. It improves the main vertex position resolution which is

especially useful in low multiplicity events. It should also enhance the ability to reject multi-

vertex events.

At high pT the momentum resolution of TPC is restricted by its position resolution

(≈ 700µm), which limits the determination of the curvature of these nearly straight tracks.

SVT provides accurate position information near the main vertex, thus may be used for

improving the resolution of high pT tracks.

The improved accuracy of the combined TPC-SVT tracks allows searching for short-lived

particles with cτ decay lengths of several hundred microns, such as the B (cτ = 122.9 µm)

and D (cτ = 311.8 µm) mesons [182].

The femtoscopic analyses in this thesis was expected to benefit from the improved re-

construction of secondary Ξ vertexes as well as from extending the pion sample to lower pT

region which would results in higher number of π−Ξ pairs in the region of low k∗. In the

end the information from SVT was not used for this work due to calibration and alignment

problems of its first data run which we use. These problems were successfully solved in the

following runs and the SVT is now utilized in measurements, such as those in [182].

5.1 SVT setup

The SVT consists of 216 silicon drift detectors (SDD) mounted on the three concentric

barrels; see schematic layout of the SVT is shown in Figure 5.1. The detector is designed to

cover pseudorapidity region −1 < η < 1 while minimizing the number of used silicon wafers.

67
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Figure 5.1: The schematic layout of the
SVT.

Figure 5.2: Photo of the STAR Silicon Ver-
tex Tracker.

Barrels consist of 6,12 and 16 ladders which carry different number of the SDDs. The inner

layer ladders carry 4 SDDs, the middle ones 6, and the outer ones carry 7 SDDs. Each

barrel consist of two “sub-layers” which are tiled with respect to each other to minimize

dead areas. The detector has an active length of 42 cm and a diameter of 30 cm. The

geometrical specifications are listed in Table 5.1.

length of active area 42 cm (max.)
inner barrel radii 5.97 cm
middle barrel radii 10.16 cm
outer barrel radii 14.91 cm

number of wafers 216
inner barrel 32 (8 × 4)
middle barrel 72 (12 × 6)
outer barrel 112 (16 × 7)

Table 5.1: Geometrical specifications of the SVT.

The ladders are made of Beryllium frame to which are epoxied the silicon wafers. The

front-end electronics for each ladder are epoxied on carbon-fiber electronic carrier that con-

tains small channel trough which flows water in order to sink the heat created from the

electronics. The ladders and electronic carriers are supported at each end by two Beryllium

end-caps.

5.2 General principles of silicon drift detectors

Silicon drift detector (SDD) could very shortly be described as “solid state TCP”. These

detectors combine some of the main advantages of the normal gas drift chambers - small
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number of readout channels and the advantages of solid state detector ,such as the excellent

position and energy resolution. They operate in a fashion similar to conventional drift

chambers, but the gas is replaced by n-type silicon, as first proposed by Rehak and Gatti[183].

Figure 5.3: Schematic principle of the silicon drift detector. Figure from [184].

Schematic drawing of the silicon drift detector is shown in Figure 5.3. The detector is

made of thin n-type semiconductor wafer of a thickness of ∼ 300 µm. There are P+ cathode

strips implanted symmetrically on both sides of the wafer. At the end of the wafer there are

placed segmented N+ read-out anodes.

The detector can be seen as two back-to-back p-n junctions operated at a reverse bias.

This creates a region depleted of mobile charge carriers which is the active region of the

detector. If there is no voltage applied the depleted region is only under the p-type cathodes

leaving the rest of the n-type bulk conductive. This conductive area can carry thermally

generated electrons that create a noise in the detector. By increasing the negative potential

at both p-type sides the depleted region can be extended further to the n-type bulk. With a

sufficiently large potential the whole detector can be fully depleted with a maximal potential

of the electric field in the middle of the wafer. With this potential, any electrons created by

incident particles inside of the depleted region will be confined in the middle of the n-type

silicon bulk.

In order to read the signal, the excited electrons have to be brought to the collecting

anodes at the end of the wafer. It is done by superimposing a linear potential parallel to

the surface with the parabolic potential that holds the electrons in the bulk. The linear

potential is created by gradual increase in the bias potential on the cathodes on both sides of

the wafer. This creates the linear electric field in the drift direction. Typical field strengths

used for drift detectors are from 200 V/cm to 800 V/cm.

In the focusing region of the detector the drifting cloud of the electrons has to be brought
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to the surface to the collecting anodes. This is done by applying different bias potentials

at opposite sides of the wafer. The minimum of the potential valley is this way gradually

shifted from the center of the bulk toward the anode. The shape of the potential inside of

the detector in the drift region and in the focusing region is shown in the Figure 5.4.

Figure 5.4: The electric potential in left: drift region and right: focusing region of the silicon
drift detector.

The drift velocity vdrift with which the free electrons drift inside of the n-type bulk

vdrift = µE, (5.1)

depends on the applied electric field E and on the the electron mobility µ. If the bulk of the

silicon is without non-uniformities in doping, the electron mobility is constant. For an applied

constant electric field the drift velocity is constant as well. Hence from measuring the drift

time it is easy to obtain the drift distance. The position of the hit on the axis perpendicular

to the drift is measured by the position of the anode that collected the drifting charge. As

the cloud of the electrons drifts toward the anodes it spreads due to diffusion and Coulomb

repulsion. This causes the signals to appear on more that one anode. The exact position of

the hit can then be calculated with better precision than is the pitch of the anodes.

5.3 STAR-SVT SDD design

The SDD detectors used in STAR-SVT are made of 280 µm thick silicon. The detector’s

size is 63 mm× 63 mm. It’s divided into two half-detectors with opposite direction of drift

by the so called ”continental divide”, the central cathode that receives the maximum voltage
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bias. This design allows the detector to work with smaller maximum voltage which helps to

keep the drift speed constant, because in the used electric field the electron mobility is well

independent of E. Also the spread of the drifting electron cloud is smaller due to the shorter

drift distance. This increase of precision is at the cost of doubling the number of readout

channels and electronics.

Figure 5.5: Detail view of the corner of the SDD used in STAR. Figure from [179].

At the ends of both drift directions are the readout anodes of a size 200 µm×200µm at a

pitch of 250 µm. In each drift direction, there are 220 p+ cathode strips implanted on both

surfaces with a spatial pitch of 135 µm to maintain the linear drift field inside the bulk. The

adjacent cathode strips are connected with the “M” shaped resistors to create the gradual

decrease of the bias potential. On the lateral side the guard lines connect to every 10th

cathode of each half-detector. These lines connect each 10th cathode of one half-detector to

that of the other half. It means that only one half of the detector needs external bias and

the other half is biased automatically. The guard lines also create the necessary guard area

that controls the voltage gradient from the high-voltage center of the detector to the sides of

the silicon wafer. The guard area is minimized so that the active area of the detector covers

94.5% of the detector. A detailed view of a corner of the SDD showing the above mentioned

features is in Figure 5.5.

5.4 SVT Slow Simulator

Correction of the measured data for the effects connected with the behavior of the used

detectors are integral part of almost every analyses. Understanding the detector and its

response to the passing particles is hence crucial. In this chapter is presented results of
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development of the so called Slow Simulator of the STAR Silicone Vertex Tracker. This

simulator is based on the physics principles of behavior of exited electrons in the drift detector

and it sequentially simulates individual components of the detector.

Figure 5.6: Schematic diagram of the STAR SVT Slow Simulator.

A block schema of the simulator is shown in Figure 5.6. The simulator consist of three

main components (so called “Makers“ in STAR software terminology). They will be described

in more detail later on, but their functions can be summarized in a following way. The first

part is responsible for simulation of the drift and expansion of the electron cloud inside of

the silicon wafer based on the information from GEANT. It also simulates response of the

readout electronics for the incoming signal. The second part generates background under

the simulated hits. By background we mean that it either generates random noise with

realistic amplitudes or, if the simulator is run inside of embedding, it mixes the simulated

data with real data at the level of detector signal. Since, before the data are saved, the

SVT detector uses online data selection and noise reduction, the third part simulates the

appropriate behavior of the online Data Acquisition System (DAQ).

Hence initially the system obtains information from GEANT about position of the hits

and energy deposited by the particle and the final results of the simulation are data similar in
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the format to a raw data that are saved during data-taking. On these data from simulation

can then be run standard STAR reconstruction system as it is done with real data.

5.4.1 Electron cloud simulation

A charged particle passing through silicon creates cloud of excited electrons which expands

as it drift toward the readout anodes. The expansion is caused by a Coulomb repulsion and

diffusion of the electrons [185]. A detailed simulation of such processes for each hit in the

SVT would take an extremely long time. Instead in this work we use an approximation of

the cloud by two dimensional Gaussian proposed by V.Rykov [186].

Figure 5.7: Schematic drawing of the 2D Gaussian parametrization of the electron cloud
created by the ionizing particle crossing the silicon wafer under angle ϕ - angle between
direction of the drift and projection of the particles velocity on to the wafer. Figure adapted
from [187].

In this approximation the expansion of the cloud is then calculated as the change of the

two main axes of the Gaussian distribution(Figure 5.7).

f(x′, y′) =
1

2πσx′σy′
exp

(
−(x′)2

2σ2x′
− (y′)2

2σ2y′

)
, (5.2)

where σx′(t), and σy′(t) are the major and minor axis that change with the time as:

dσ2x′

dt
= 2Dx′ + fx′(σ2x′ , σ2y′),

dσ2y′

dt
= 2Dy′ + fy′(σ

2
x′ , σ2y′). (5.3)

The Dx′ , and Dy′ are diffusion constants in the frame of the electron cloud. The functions
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fx′,y′(σ
2
x′ , σ2y′) describe expansion of the electron cloud via Coulomb repulsion [186]:

fx′(σ2x′ , σ2y′) =

(
µQ

4πε0ε

) K1(
σy′
σx′

)α − K3
β ln

{
(
σy′
σx′

)β + [1 + ( d
σy′

)2]−2
}

σx′

[
1 +

(
K1σy′
K2d

)γ]1/γ ,

fy′(σ
2
x′ , σ2y′) =

(
µQ

4πε0ε

) K3 − (K3 −K1)(
σx′
σy′

)δ

σx′

[
1 +

(
K1σy′
K2d

)γ]1/γ ,

σx′ ≥ σy′ ,

(5.4)

where µ is the electron cloud mobility; ε is the dielectric constant of the silicon; d is the

thickness of the SDD wafer and Q is the total charge of the electron cloud. The constant

K1,2,3 are defined from asymptotic behavior of the Coulomb repulsion term[186]: K1 = 0.43,

K2 = 0.25, K3 = 0.58. The values of the phenomenological constant α = 2/3, β = 4, γ = 3/2

and δ = 1/2 were chosen [186] to provide agreement with corresponding numerical solution

of full continuity equation. More details on regarding the theoretical equations can be found

in [187].

One can notice that appearance of the σx′ in the denominator of 5.4 can cause a difficulty

when numerically computing 5.3 for small (initial) values of σx′ . For this reason it is better

to use the 5.3 in terms of
dσ3x′,y′

dt
=

3

2
σx′,y′

dσ2x′,y′

dt
. (5.5)

An additional effect that has influence on the electron cloud expansion is the so called

trapping/detrapping effect. It is caused by impurities in the silicon which can capture the

excited electrons for a short time and hence slowing them down during the drift. In our

calculation this effect is accounted for by having different effective diffusion constants in the

drift and anode direction:

Dx = D + τtrap ∗ v2drift
Dy = D,

(5.6)

where the D = 0.0035 mm2/µs is electron diffusion constant in silicon, the vdrift is electron

drift velocity, and τtrap ∼ 5 · 10−5µs is the electron trapping constant. The inclusion of the

trapping/detrapping into diffusion constant causes effectively the electron cloud to rotate

the major axis towards the drift direction as the cloud expands over the time. Results of

calculations with different initial angle ϕ can be found in [187].

After the electron cloud reaches the readout anodes the signal is amplified and shaped in
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(a) (b)

Figure 5.8: (a) Shape of the Preamplifier and Shaper(PASA) response. (b) Measured re-
sponse to laser hit in SDD.Figure from [181].

the Front-End Electronics(FEE). First the incoming signal is shaped by the the PreAmplifier

ShAper (PASA). Signal from a simulation of the PASA response is shown in Figure 5.8.

Extended discussion about PASA simulation is in [187]. Following the amplification the

signal is stored in a Switch Capacitor Array (SCA) which samples the signal with frequency

of ∼ 25 MHz giving 128 bins in the drift direction.

After simulation of the hits it is necessary to include realistic simulation of the back-

ground. Proper simulation of the noise is necessary as it can significantly alter properties of

the reconstructed hits. High noise can not only create fake hist, but it can also smear signal

of real hits an they may not get reconstructed properly. The noise of the detector can vary

in time and also wafer by wafer. For this reason the simulator allows to retrieve information

about noise levels for individual wafers for the given date that the simulation is run for. If

the simulator is only run in simple simulation without embedding the whole wafer is covered

by the generated signal. However if the simulator is run for the purpose of embedding the

simulation into real data their generated noise is superimposed only on the simulated hits

as the real data already include its own noise. The simulated data are then mixed with the

real data and passed further to the simulation of DAQ.

Before saving to the storage the volume of the data has to be significantly reduced. The

Data Acquisition System (DAQ) contains algorithm for online selection of hits as well as for

noise reduction. In the DAQ only hits with succession of pixels that pass selection criteria

are kept. These criteria are chosen so that a random noise and occasional signal spikes do

not pass. These criteria vary between individual runs and are hence loaded from database

for every simulation. An example of the simulated signal from the SVT detector after the
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three stage is shown in Figure 5.9.

(a)

(b)

(c)

Figure 5.9: Output of the SVT slow Simulator at different stages of the simulation from top
to bottom: (a) simulated hits and PASA response (b) addition of the simulated background
(c) final simulated event after passing DAQ simulation.

5.4.2 Simulation to real data comparison

The expansion of the electron cloud causes the properties of hits to change with the time

and hence with the drift distance. To test the functionality of the simulator we compare

basic properties of the reconstructed hits from simulator to those from real data.

By the simple nature of the cloud expansion we should expect to to see that as we go
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from short to long drift times the hits should be larger and their height (peak ADC) should

decrease. During initial tests of the SVT detector the expansion of the electron cloud in anode

direction was measured using laser induced ionization [188]. The results of the measurements

are compared in Figure 5.10 with the theoretical predictions for the cloud expansion. One

can observe that in the initial stages of the expansion when the electron cloud is dense the

Coulomb repulsion plays dominant role while later the the expansion is driven mainly by the

diffusion.

Figure 5.10: Dependence of the cloud size in anode direction on drift time. Points are data,
solid line shows theoretical calculations with diffusion and Coulomb repulsion. Dashed line
shows the diffusion only. Dotted line shows Coulomb repulsion only. Figure from [188].

A similar comparison has to be done between the simulator and the real data. A com-

parison of four basics properties of the reconstructed hits is shown in Figure 5.11. In Fig-

ure 5.11(a) is spectrum of heights of hits, shown as maximum of Analog-To-Digital converted

signal (ADC) of the hit. In Figure 5.11(b) is dependence of the average height of hits as a

function of the drift time. In Figure 5.11(c) is shown dependence of an average width of hits

in the time direction also as function of time. By the width of the hit is meant the ADC

weighted RMS of reconstructed hit. One can clearly observe significant change in the height

and size of the hits as function of the time it takes the electron cloud to reach the readout

anodes. With the time the cloud gets significantly more spread out and the density of the

electrons decreases. One can expect that as the signal gets weaker some parts of the hits will

”sink“ into the background and will not get reconstructed as part of the hit. This is indeed

observed in the Figure 5.11(d) where the average total reconstructed charge of the hits is
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shown as a function of the drift time.

(a) (b)

(c) (d)

Figure 5.11: Comparison of properties of reconstructed hits in the SVT between real data
in Black and simulation in green. (a) Spectrum of maximal ADC values in the hits. (b)
dependence of the average maximum ADC value in the hits as function of the drift time. (c)
dependence of the average RMS(width) in time direction of the hit as function of the drift
time. (d) time dependence of the average reconstructed charge of the hit.

We observe that while general shape of presented hit distributions is in good agreement

with the data there is a discrepancy in the absolute scales. This can be attributed to different

initial conditions of the simulation, such as the initial sizes of the hits. The initial conditions

can be fine-tuned by comparison of the simulation and real data at short drift times. This

indeed was performed in [182] and together with refining of the gain of the electronics brought

excellent agreement between the simulation and the data, as shown in Figure 5.12. Complete

detail on the fine-tuning procedure can be found in [182].
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(a) (b)

Figure 5.12: Comparison between SVT simulation and real data after fine-tuning of initial
sizes of the electron cloud. Left: peak ADC versus time. Right:total charge versus time.
Figure from [182].
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Chapter 6

Femtoscopy of π−Ξ system

6.1 Physics motivation

From measurements presented in Section 2 some general conclusions can be drawn which

frame and motivate the main theme of this thesis, the π−Ξ correlations, in the context of

ultra-relativistic heavy ion physics.

The matter created in collisions of heavy ions exhibits properties suggesting that a state

of deconfined partonic degrees of freedom was reached [63]. Current data on spectra and

elliptic flow from Au+Au collisions at RHIC energies demonstrate that hot and dense system

created in the collision builds up substantial collectivity leading to rapid transverse expan-

sion. Moreover, properties of the induced flow strongly depend on whether the collectivity

is achieved at partonic or hadronic level. It’s clear that multi-strange baryons, including

Ξ, obtain throughout the evolution of the system substantial elliptic flow [92] comparable

in magnitude to other particle species. Because of their presumably small hadronic cross-

section multi-strange baryons are expected to undergo few interactions in the hadronic phase

[84], and hence provide more direct probe into the early partonic stage. The study of multi-

strange baryon flow is the of high importance since the collective behavior of these particles,

suggested by large values of observed elliptic flow together with its observed constituent

quark scaling, suggests that collective motion was already achieved prior to hadronization -

already at the partonic level.

As discussed in the Section 3.4 the space-time structure of the particle emitting source is

strongly affected by a collective expansion. It exhibits as an effective decrease of measured

HBT radii and a difference between average emission points for particle species with non-

equal masses. The non-identical particle correlations can be used as an independent cross-

check of flow measurements in heavy-ion collisions by measuring this flow-induced emission

asymmetry.

It was already shown that in heavy-ion collisions average emission points of pions, kaons,

81
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and protons are not the same [150] (Figure 3.10). Hydrodynamically inspired models [74]

predict a mass-ordering of average space-time emission points with the effect increasing with

a mass difference of the measured particle pair. Since this effect is predicted to increase

with a mass difference between the particles, studying correlations in system, such as π−Ξ ,

where the mass difference is large, should provide important test of transverse expansion of

the matter and flow of multi-strange baryons.

6.2 Data selection

In this femtoscopic analyses we aim to extract rather subtle correlation signal out of, in total,

four tracks left by π−Ξ pair in the STAR detector. Proper selection of data, on the level

of event, track, and pair cuts is crucial for removing any unwanted detector effects yet not

to hinder available statistics. The data selection and cuts are described in the text in the

order similar to the flow of data during the actual analysis itself - starting with selection of

dataset and following with event level cuts, track cuts, Ξ reconstruction, and pair cuts.

6.2.1 Event selection

Two data sets of Au-Au collisions at energies
√
sNN=200 GeV and

√
sNN=62 GeV recorded

by the STAR experiment during a Run IV has been used in the following analysis. The

dataset at
√
sNN=200 GeV consists of two parts: a minimum bias sample covering 80% of

the most central to peripheral events (16 · 106 events). In addition a sample of central

events (10 ·106 events) at
√
sNN=200 GeV was taken to enhance the statistics of the data in

10% most central collisions. In the case of
√
sNN=62 GeV collisions a minimum bias dataset

consisting of events with centrality between 0%-80% most central collisions has been used.

All the data were taken with a maximum magnetic field of 0.5 Tesla generated by the main

STAR magnet.

In all the datasets the main cuts applied at the level of the whole events are cuts on the

main vertex position and centrality of the event. Only events with reconstructed collision

vertex positioned within ±25cm from center of the main TPC were selected in order to ensure

the same acceptance across the pseudorapidity region |η| . 1 used for the π and Ξ. The

STAR experiment employs centrality selection based on uncorrected charged multiplicity in

the mid-rapidity region |η| < 0.5 as described in [66]. The available statistics of data samples

(minimum bias plus the central-triggered data) together with Ξ reconstruction efficiency,

which will be described later, dictates the use of only three centrality bins corresponding

to a fraction of total hadronic cross section of 0-10%, 10-40%, and 40-80% from central to

peripheral collisions. The remaining 80-100% most peripheral bin cannot be used because of

trigger bias at low multiplicities. .
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6.2.2 Particle selection

This analyses was performed using information obtained from tracks left by charged particles

in the main TPC. The available particle statistics and their distribution in momentum and

rapidity is hence driven by acceptance, and resolution of the TPC combined with detection

and reconstruction efficiency. Since only charged particles leave and ionization track in the

TPC gas the analysis can be done only for pairs with both π and Ξ charged, as the π± and

the decay products of Ξ± leave an ionization signal in the TPC.

Primary pion selection

As first particle in the studied pair are selected primary pions. We use tracks which, with

pion mass assumption, fall in rapidity window |y| < 0.8. To ensure a good quality of the

used tracks we require that the track has a minimum number of 15 hits in the TPC. For

the track to be considered as a primary we require that it points toward the reconstructed

primary vertex of the collision. This requirement is defined by a cut on DCA (Distance of

Closest Approach of the extrapolated track to the primary vertex) to be less then 3 cm.

Figure 6.1: Pions selected according to their energy loss dE/dx in the TPC.

To identify the track as originating from pion we use the information about energy loss

dE/dx in the TPC gas, as discussed in Section 4.2.1. For the track to be selected for

this analysis as a pion its measured dE/dx must be within 2σ (standard deviations) from

the value predicted by 4.1 for a pion of a given momentum. The widths of the dE/dx

bands around the mean of 4.1 are momentum and multiplicity dependent property of TPC

and are deduced from experimental data. As shown in the Figure 4.6 the dE/dx band

of pions crosses at low pT with signal coming from electrons and at pT & 1GeV becomes

indistinguishable from kaons sand protons. In order to remove significant contamination

from protons and kaons we also require that the dE/dx signal lies at least 2σ away from

the dE/dx band of kaons and protons. This , as shown in the Figure 6.1, together with pT -
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acceptance of TPC limits reachable pion pT range to be effectively 0.08 < pT < 0.6 GeV/c

event though and additional cut on p < 1 GeV/c is introduced. In the low pT region remains

the contamination from electrons. Because of the huge mass difference between the pions

and electrons the misidentified tracks from electrons will not influence the final correlation

function. The electron contamination will only show up in the increase of the λ parameter.

Ξ reconstruction and selection

The multi-strange baryons Ξ are often called the “cascades” because of their characteristic

main decay channel. Multi-strange baryons were for the first time observed in experiments

in which cosmic rays or beams of accelerated particles interacted in bubble chambers. In

experiments, such as the one in which Barnes discovered Ω− baryon [189], typical pattern

of tracks from charged particles from subsequent decays is seen. Because of its lifetime the

Ξ cannot be detected directly as it decays close to the collision region outside of the active

volume of the detector. However this decay length is sufficient for topological reconstruction

which means that we are able to distinguish between the main collision vertex and secondary

decay vertexes of Ξ. The geometry of the main decay channel, as shown in Figure 6.2, is used

to reconstruct individual particles undergoing the decay via Ξ → Λ + π, and subsequently

Λ → π + p. In Table 6.1 are shown properties of the concerned particles.

particle quark content mass[MeV] cτ [cm] decay mode 'B.R.

Ξ− dss 1321.31± 0.13 4.91 Λπ− 99.9
Ξ0 uss 1314.83± 0.20 8.71 Λπ0 99.5
Λ uds 1115.683± 0.006 7.89 pπ− 63.9

Table 6.1: Particle properties according to the Particle Data Group [13].

We are not able to topologically reconstruct the neutral Ξ0 since it decays into a Λ and

neutral pion which does not leave ionization information in the TPC. For this reason only

the charged Ξ− and Ξ+ are used in this analysis.

In the topological reconstruction of Ξ we are looking for a particular configuration of

three tracks in an environment of high track multiplicity. The combinatorial background, ie.

the number of rejected candidates, is huge and performing such a selection for every analysis

pass on the data would take an unreasonably long time. In order to significantly speed up

the analysis the data selection was done in two passes. In the first “prefilter” pass most of

the Ξ candidates were rejected using looser cuts which removed most of the combinatorial

background and only events with suitable candidates were saved. Final cuts are used then

used later during physics analysis.

The, so called bachelor pion pion from Ξ decay, proton and pion from Λ decay are selected

according to their specific ionization dE/dx in the TPC on the level of 3σ around the mean
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Figure 6.2: Schematic drawing of the cuts used in the topological reconstruction of Ξ. Figure
from [190].

value predicted by 4.1. After that the topological cuts depicted in Figure 6.2 are employed to

select Ξ candidates, according to values in Table 6.2 and 6.3, The procedure of reconstruction

of multi-strange baryons and cut optimization has been extensively studied within the STAR

collaboration. Complete study of Ξ reconstruction can be found in [191, 190, 192]. The last

two rows in the Tables 6.2 and 6.3 define cut based on the relation between DCA of Ξ and

DCA of the subsequent Λ to the primary vertex. Two types of the functional - pT dependent

relations are used (denoted as DcaV0ToPrimVtxCorrType).

For DcaV0ToPrimVtxCorrType=1:

DcaV0ToPrimVertex >
√
DcaXiToPrimVertex + DcaV0ToPrimVtxCorrOffset

+ 0.4

[
1.−

(
1 + e(−4.pT+6.)

)−1
]
,

(6.1)

and for DcaV0ToPrimVtxCorrType=2:

DcaV0ToPrimVertex >
√
DcaXiToPrimVertex + DcaV0ToPrimVtxCorrOffset

+ 0.05

[
1.−

(
1 + e(−4.pT+3.)

)−1
]
.

6.2.3 Background construction - event mixing

In the process of obtaining the experimental correlation function according to 3.39 the two-

particle distribution for the denominator must be created. The goal is to obtain a distribution
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0− 10% 0− 10% 10− 40% 10− 40% 40− 80% 40− 80%
prefilter final prefilter final prefilter final

track σdE/dx 3 3 3 3 3 3

mΞ range[GeV/c2] 0.025 0.007 0.025 0.007 0.025 0.007
mλ range[GeV/c2] 0.030 0.007 0.030 0.007 0.030 0.007

min pT [GeV/c] >0.5 0.6 0.5 0.6 0.5 0.6
Rapidity range <1.5 0.8 1.5 0.8 1.5 0.8

TpcHitsBac >8 15 7 10 7 10
TpcHitsV0Baryon >10 20 10 15 10 10
TpcHitsV0Meson >10 10 10 10 10 10

DecayLengthXi >3 5 2 3 1.3 2
DecayLengthV0 >0 0 0 0 0 0

DcaXiToPrimVtx <0.70 0.55 0.70 0.55 0.70 0.55
DcaV0ToPrimVtx >0.09 0.10 0.09 0.10 0.09 0.10
DcaBacToPrimVtx >1.20 1.50 0.80 1.00 0.60 0.90
DcaXiDaughters <0.80 0.70 0.80 0.70 0.80 0.70
DcaV0Daughters <0.80 0.70 0.80 0.70 0.80 0.70

DcaV0ToPrimVtx
CorrType

1 1 1 1 2 2

DcaV0ToPrimVtx
CorrOffset

-0.08 0.00 -0.15 -0.10 -0.35 -0.20

Table 6.2: Values of the cuts used for topological reconstruction of the Ξ in the Au+Au
collisions at

√
sNN=200 GeV. All distance values are in centimeters.

of pairs similar to the distribution of real pairs, but without any femtoscopic correlations. In

this analyses we use an “on-the-fly” mixing of events. As the individual events pass through

the analyses they are divided into “similarity classes” according to a chosen set of physics and

detector characteristics. Then spectrum of pairs is created by taking a first particle(pion)

from one event and pairing it with a second particle(Ξ) from a different event. Only events

withing the same class are mixed in order not to introduce artificial correlations into the

created two-particle spectra by mixing up two “too“ different single-particle spectra.

In this analyses three parameters according to which we divide the events into the dif-

ferent classes (bins) are used. Two of them are physics observables: event multiplicity and

orientation of the event plane. The binning in the event plane orientation helps to re-

move correlations at large values of k∗ which come mainly from elliptic flow. This helps to

flatten the normalization region of correlation function where no two-particle effects should

be present. Proper normalization is crucial for fitting the experimental correlation function

with theoretical predictions. The effect of the binning in the event plane orientation is shown

in Figure 6.16. The third binning parameter is detector-related and it is the position of the

collision vertex along the beam direction. This is used to eliminate effects of changing ac-

ceptance as a function of position of the vertex. In addition one more parameter is used for
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0− 10% 0− 10% 10− 40% 10− 40% 40− 80% 40− 80%
prefilter final prefilter final prefilter final

track σdE/dx 3 3 3 3 3 3

mΞ range[GeV/c2] 0.020 0.007 0.020 0.007 0.020 0.007
mλ range[GeV/c2] 0.010 0.007 0.010 0.007 0.010 0.007

min pT [GeV/c] >0.5 0.6 0.5 0.6 0.5 0.6
Rapidity range <1.5 0.8 1.5 0.8 1.5 0.8

TpcHitsBaclo >15 15 10 10 10 10
TpcHitsV0Baryonlo >20 20 15 15 10 10
TpcHitsV0Mesonlo >10 10 10 10 10 10

decayLengthXi >3 5 1.5 3 1.3 1.5
decayLengthV0 >0 0 0 0 0 0

DcaXiToPrimVtx <0.60 0.55 0.60 0.55 0.60 0.55
DcaV0ToPrimVtx >0.10 0.10 0.10 0.10 0.10 0.10
DcaBacToPrimVtx >1.30 1.50 0.90 1.00 0.80 0.90
DcaXiDaughters <0.70 0.70 0.70 0.70 0.70 0.70
DcaV0Daughters <0.70 0.70 0.70 0.70 0.70 0.70

DcaV0ToPrimVtx
CorrType

1 1 1 1 1 1

DcaV0ToPrimVtx
CorrOffset

-0.10 0.00 -0.15 -0.10 -0.20 -0.20

Table 6.3: Values of the cuts used for topological reconstruction of the Ξ in the Au+Au
collisions at

√
sNN=62 GeV. All distance values are in centimeters.

binning implicitly which is the time at which the events were recorder. This is important

and should not be overlooked as the acceptance of detector may significantly change over the

whole period of data taking. This condition is satisfied automatically as the data coming to

the analysis from prefilter are automatically stored in files according to a day at which they

were taken. For this analysis we use binning of 5 bins in multiplicity, 5 in event plane angle

and 10 cm wide bins in vertex position.

One has to be careful when combining the data from different mixing bins. Simple

summing of the pair spectra for numerators Ai(~q) and denominators Bi(~q) of 3.39

C(~q) = N

∑
i

Ai(~q)∑
i

Bi(~q)
, (6.2)

where i =(multiplicity,event plane, vertex position) runs over all event-class bins, may lead

to an introduction of fake correlations effects. In each mixing bin the real correlation function

should be the same:

Ci(~q) = Ni
Ai(~q)

Bi(~q)
= C(~q), (6.3)



88 6. Femtoscopy of π−Ξ system

but the two-particle spectra and normalization constant will differ from bin to bin:

Ai(~q) 6= Aj(~q), Bi(~q) 6= Bj(~q), Ni 6= Nj . Altering 6.2 to include 6.3

C(~q) = N

∑
i

Bi(~q)
Ai(~q)

Bi(~q)∑
i

Bi(~q)
= N

∑
i

Bi(~q)
C(~q)

Ni∑
i

Bi(~q)
= NC(~q)

∑
i

Bi(~q)

Ni∑
i

Bi(~q)
(6.4)

we see that to have the right-hand side equal C(~q) only up to a normalization constant the

last sum must not depend on ~q. This can be done only if Bi(~q) = Bj(~q), which is not - that’s

why we do the mixing, or if the two-particle distributions are added with the same weight

Ni = Nj . For this reason in our analyses we first rescale the denominators of each bin to

B′
i(~q) = Bi(~q)/Ni before summing over all bins to get the final correlation function.

6.2.4 Pair cuts

Even with a proper mixing the real two-particle distribution contains detector related non-

femtoscopic correlations at low ~k∗ which are not present in the mixed background. These

effects arise as consequence of imperfect track reconstruction. During the reconstruction

process the signal from a single particle may be accidentally reconstructed as two separate

tracks with very close momenta. This “track splitting” then shows up as an increase in

the measured correlation function. An opposite effect of “track merging” when two close

tracks from two different particles are accidentally reconstructed as only one final particle

may occur as well. This in turn leads to a decrease of the correlation. To remove these effect

cuts on the level of pairs must be applied to both real and mixed pairs.

Track splitting

The cut that removes the splitting is the same as the one employed in [111] and is discussed

in detail in [193]. It is based on a comparison of locations of the actual hits in TPC belonging

to the two tracks and assigning a value of “splitting level”(SL) to the pair of tracks according

to a formula:

SL =

∑
i Si

Nhits1 +Nhits2
, (6.5)

where i is the pad-row number of the TPC, and Nhits1 and Nhits2 are the total number of

hits associated for each track and Si takes value depending on existence or non-existence of
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a) b) c) d)

Figure 6.3: Schematic description of the anti-splitting cut. Different scenarios of hit distri-
bution in the TPC for possibly split tracks. Closed circles are hits assigned to one track,
open circles are assigned to the other. a) SL = -0.5 (clearly two tracks) b) SL = 1 (possible
split track) c) SL = 1 (possible split track) d) SL = 0.08 (likely two tracks). Figure from
[111].

hits at a given pad-row:

Si =


+1 one track leaves a hit on pad-row

−1 both tracks leave a hit on pad-row

0 neither track leaves a hit on pad-row.

(6.6)

The SL ranges from −0.5 for certainly distinct tracks to 1.0 for track with high likely-hood

of splitting. The principle of this anti-splitting cut is depicted in Figure 6.3. For our analyses

we require −0.5 ≤ SL ≤ 0.8 for all pairs of used tracks of the same electric charge.

In addition a strong effect of track splitting has been observed between tracks of pri-

mary pion and the bachelor pion from Ξ decay. As can be seen in Figure 6.4 the phase

space corresponding to the small difference between momenta of bachelor and primary pi-

ons, where the splitting occurs, corresponds to a rather insignificant part of the k∗-space

of the π − Ξ pairs and can be safely removed by a cutting on difference of momenta

|~pprimary − ~pbachelor| > 0.065GeV/c. This is different from anti-splitting procedures used in

π−π HBT where performing cuts on phase-space would lead to a significant loss of statistics.

Track merging

The procedure of removing effects of track merging is again similar as in the case of π−π
analyses [111, 193]. Hits from two tracks are considered merged when the probability of

separating them is less than 99% according to the two-track resolution of the TPC. We use

requirement of all pairs to have a fraction of merged hits smaller than 10%.



90 6. Femtoscopy of π−Ξ system

dp[GeV]
0 0.05 0.1 0.15 0.2 0.25

k*
[G

ev
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0

10000

20000

30000

40000

50000

CUT

(a)

k*[GeV/c]
0 0.1 0.2

C
(k

*)

0.8

0.9

1

1.1
 correlation function-Ξ--πuncorrected 

0-10% 200GeV Au+Au

 no cut

 anti-splitting cut

(b)

Figure 6.4: Effects of the track splitting between bachelor and primary pion in the like-
sign correlation function. Left: numerator of the correlation function as a function of k∗ of
the pair and difference of momenta of primary and bachelor pion dp = |~pprimary − ~pbachelor|.
Right: Comparison of the uncorrected correlation function with and without the applied cut
on dp > 0.065 GeV/c.

6.3 Purity corrections

As described in Section 3.2.1 the admixture of pairs containing misidentified or non-primary

(coming from long-lived decays) particles is a cause a significant decrease as well as defor-

mation of the measured correlation function when compared to a “real” correlation function

which would be measured by an ideal experiment in accordance with theoretical formula 3.16

and 3.32. Compared to the Section 3.2.1, where a simple constant λ was introduced as a

correction into the measured correlation function, in the case of π−Ξ analyses more sophis-

ticated approach has to be used as the amount of non-purities can vary as a function of ~k∗

.

In this analysis the corrected (real) correlation function C(~k∗)real is obtained from the

experimentally measured C(~k∗)exp as

C(~k∗)real =
[
C(~k∗)exp − 1

]
∗ P (~k∗) + 1, (6.7)

where P (~k∗) is the purity of the pair, the ratio of correlated to all pairs, as a 3-dimensional

function of ~k∗ = (k∗, cosθ, ϕ). The purity of the π−Ξ pair is calculated as a product of

purities of individual particles samples: PπΞ = Pπ · PΞ.
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pion purity

There are two main sources for impurities of pions. First, with a certain probability, other

particles then pions can be wrongly identified as pions according to their dE/dx energy loss.

In this analysis this is mainly the case of electrons due to the crossing of electron and pion

dE/dx band at low pT . The additional decrease of purity of pion sample is due to real pions

coming from weak decays and decays of long-lived resonances which decay far out of the

collision region so that their decay products are not correlated via FSI with the rest of the

system.
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Figure 6.5: Example of a measured identical π−π correlation function in the 10% most
central Au+Au collisions at

√
sNN=200 GeV, combining signal from π+−π+ and π−−π−.

The shown results are for pairs with 175MeV/c < kT < 200MeV/c. The correlation functions
are plotted in the out, side, long projections with unprojected direction integrated over
qout, qside, qlong < 30MeV/c.

As discussed in the Section 3.2.1 the inclusion of uncorrelated particles in the femtoscopic

measurements with identical particle will result in a decrease of the strength of the correlation

and increase of the extracted λ parameter. We use this factor for our analyses and take
√
λ

from π−π HBT as a measure of purity of primary pions. It was discussed [194, 110], that
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Figure 6.6: kT dependency of the extracted Gaussian femtoscopic radii from the π−π cor-
relation function in

√
sNN=200 GeV Au+Au collisions. The results are shown for the same

three centrality bins as those used in the π−Ξ analysis. The line shows blast wave fits to
the data[74]. For comparison data from the previous STAR π−π measurement [111] are
included.

partially coherent emission of particles would lead to an increase of λ as well, but it was

experimentally measured[117] that the emission of pions in heavy ion collisions is consistent

with fully chaotic emission.

STAR experiment has already performed measurements of π − π HBT at
√
sNN=200 GeV[111]. However these measurements were done with at that time avail-

able statistics from Run II using only four kT bins with lowest kT of 200 Mev/c. In our

analyses large fraction of the pions that are able to create low k∗ π−Ξ pairs are, due to

π and Ξ acceptances, at or bellow pT of 200MeV/c. Also the measurements were done for

different centrality classes then we use. For these reason it was necessary, as a part of this

analyses, to perform a new π−π HBT measurement with higher statistics data sample of

Run IV using exactly the same pion cuts as those used for π−Ξ analyses (as described in Sec-

tion 6.2.2). Figure 6.5 shows example of the measured π−π correlation function in the most

central Au+Au collisions at
√
sNN=200 GeV. The correlation functions were first corrected

for the Coulomb interaction in the same way as in [111], using so called “Bowler-Sinyukov”
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Figure 6.7: (a)Invariant mass of the reconstructed Ξ− as a function of its transverse momen-
tum pT . The data are from 10% most central Au+Au collisions at

√
sNN=200 GeV. (b) The

same data integrated over pT . In blue is mass range used for analyses and calculation of the
signal |minv −mΞ| < 7 MeV/c2. In red is the range used for calculation of the background,
on each side 9 MeV/c2 < |minv −mΞ| < 20 MeV/c2.

procedure[195, 196]. This procedure is based on the fact that the strength of the correlation

signal due to the Coulomb interaction is much less sensitive to the size of the source then the

correlation coming from the quantum statistics. The correlation coming from the Coulomb

interaction can then be corrected in the measured correlation function 3.41 by changing its

parametrization into:

CK(q) = (1− λ) + λ Kcoul(q)exp
[
−q2outR2

out − q2sideR
2
side − q2longR

2
long

]
, (6.8)

where the introduced term Kcoul(q) is the squared two-particle Coulomb wave function 3.35

integrated over a Gaussian source of approximately the same extent as the fitted one.

The correlation function in 6.8 is fitted with the 3-dimensional Gaussian in Cartesian out,

side, long coordinate system and in Figure 6.6 are shown the extracted Rout, Rside, Rlong.

Most importantly, for this analyses, in the same figure λ parameters are shown together with

results from the previous STAR π−π HBT measurement[111]. The
√
λ from this figure is

then used as pT dependent pion purity P (pT )π assuming that average pT of the pions is the

same as mean kT of the corresponding kT -bin of the π−π correlation function.

Ξ purity

For Ξ the purity of the sample can be simply deduced from invariant mass plot of the

reconstructed Ξ as a function of pT as presented in Figure 6.7a. For each pT bin of Figure 6.7a
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the raw yield of Ξ is calculated as a sum of content of the minv bins under the mass peak

within the range of ±7 MeV/c2 and the amount of background is estimated by linear fit

to the background out of Ξ mass peak 9 MeV/c2 < |minv −mΞ| < 20 MeV/c2, as shown in

Figure 6.7b. The results of this procedure are presented in Figure 6.8. As can be seen the

majority of the reconstructed Ξ∗ are in the pT region of 1 < pT < 3 GeV/c. The samples for

both used collision energies have purity of about 80% with the exception of the very low-pT

part of the Ξ spectra.
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Figure 6.8: Extracted raw yield and purity of the Ξ samples as a function of transverse
momentum pT in Au+Au collisions at (a-b)

√
sNN=200 GeV and (c-d)

√
sNN=62 GeV

collision energy.

pair purity

The purity of the π−Ξ pairs P (~k∗) for each bin of ~k∗ = (k∗, cosθ, ϕ) is a product of purity of

pion and Ξ sample P (~k∗) = Pπ(~k
∗)PΞ(~k

∗). The individual single particle purities as function
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Figure 6.9: pT distribution of particles contributing to the π−Ξ pairs of given k* for (a)π
and (b)Ξ. The solid line shows and average pT of the contributing particle.
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Figure 6.10: Spherical decomposition of the purity of π−−Ξ+ pairs for three centralities of
Au+Au collisions at (a)

√
sNN=200 GeV and (b)

√
sNN=62 GeV.

of ~k∗ of the pair are calculated by convolution of the pT dependent purities obtained in the

the previous paragraphs with distributions of ~k∗(pT ) for both particles. In Figure 6.9 are

shown the distributions of k∗(pT ) for both π and Ξ . In the same figure is also shown the
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average pT with which both particles contribute to bin of given k∗. It can be seen that,

mainly for pions, the mean pT varies significantly with k∗. This is important for two reasons.

First, with conjunction of Figures 6.6 and 6.8, we expect that the final pair purity will

also depend significantly on k∗. Moreover the pair purity may depend not only on the

magnitude of the ~k∗ vector, but may also be dependent on its direction. Hence using only

single constant, such as the λ is used in π−π HBT, for purity correction would lead to a

distortion of the final π−Ξ correlation function. For this reason purity correction has to be

done bin by bin in 3-dimensional ~k∗ .

The contribution of particles with different pT into different k∗ bins is also important

for the interpretation of results. In models, such as those based on hydrodynamic evolution,

where is strong correlation between particles space-time emission point and its momentum

the size of the measured homogeneity region changes with pT of the particle.

The result of the convolution of single particle purities with distribution of k∗(pT ) of

the pairs is a 3-dimensional pair purity function P (~k∗). To visualize the P (~k∗) we can use

the apparatus of the spherical harmonics decomposition introduced in Section 3.2.2 to see

the influence of purity correction on not only the absolute height of the correlation function

(coefficient A0,0) but also on the extracted shift in the Rout direction given by the coefficient

A1,1. The spherical projections of the final pair purities are presented in a Figure 6.10. The

figure shows that the purity correction can contain significant angular dependence, and full

3-dimensional purity correction is hence necessary.

6.4 Momentum resolution

Energy loss of the particles traversing the TPC together with limited momentum resolution

during the track reconstruction induces uncertainty in determination of the ~k∗ of the pair

and may lead to systematic distortion of the measured correlation function. Theses effects

of momentum resolution then have to accounted for in the analysis.

To estimate the magnitude of the distortion of the correlation function first the momen-

tum resolution for both particles has to be quantified. This is done by embedding known

simulated particles into the real data at the level of detector signal and passing the events

down the whole reconstruction chain. The reconstructed momenta of the simulated tracks

is then compared with the initially embedded ones in the following way. The real (initial)

momentum

Px = P sin θ cosϕ Py = P sin θ sinϕ Pz = P cos θ (6.9)

is altered by the reconstruction so that

(P, θ, ϕ) −→ (P + δP, θ + δθ, ϕ+ δϕ), (6.10)
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where distributions for δP
P , δθ and δϕ are extracted from the embedding data and approx-

imated by normal distribution - characterized by mean and width. The only distribution

that has non-negligible mean is the δP
P in the case of Ξ. This characterizes the mean change

of the momentum due to the energy loss. In the case of pions the 〈 δPP 〉 = 0, because energy

loss is accounted for during the track reconstruction by a Kalman filter procedure.

Figure 6.11: Momentum resolution, in form of parameters of Gaussian distribution, from
Monte Carlo embedding of Ξ in the 0-10% most central collisions.

In Figure 6.11 there is an example of extracted parameters of the smearing distribution

for Ξs in the most central dataset. Only those embedded Ξ that fulfill the same topological

cuts after the reconstruction as the real ones are used. The data are fitted with momentum-

dependent function

f(p) = a+ bpα + cp or f(p) = a+ bpα, (6.11)

which is then used for corrections. Similarly as in the Figure 6.11 the parametrization of the

smearing distributions are extracted for all centrality bins. In the case of pions, momentum

resolution changes negligibly with centrality therefore the same parametrization is used for
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all centralities, similar to one used in [193, 111]. The results of the parametrized smearing

distribution are summarized up in the Figure 6.12.
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Figure 6.12: Centrality dependence of the π and Ξ momentum resolution.

To estimate the effects of the momentum resolution we show calculations of the correlation

function. One without no momentum resolution taken into account and one with momentum

resolution. The calculations shown in Figure 6.13 are done using a blast wave model with

parametrization of thermal freeze-out as it will be described later on in Section 6.5.4. In the

case of calculation with momentum resolution the particle momenta are in addition smeared

according to 6.10 using parametrization 6.11 and values from Figure 6.12 The ~k∗ of the

pair is then recalculated and results of the calculation are inserted in the new (smeared)
~k∗ bin. One can see from Figure 6.13 that the effects of the finite momentum resolution

are very small except for the very lowest k∗ bin. Since this bin in the measured correlation

function suffers from very low statistics and hence does not influence significantly fits to the

correlation function we can safely disregard the effects of the momentum resolution in the

fitting and analyses of the π−Ξ correlation function.
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Figure 6.13: Comparison of calculated correlation functions when finite track momentum
resolution is taken into account. The data and theoretical correlation function are from (a)
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6.5 Results

In the beginning of this section we briefly review results on π−π HBT that were obtained as a

prerequisite for the main analyses. In the next part of this chapter we present results on π−Ξ
correlations in Au+Au collisions at two different energies and their centrality dependence.

In the second section information about the size of the source and relative shift between

average emission points of the two particle species is extracted. Access to this information

is of high importance as it is expected that the shift arises as a consequence of a transverse

flow. For this reason the obtained results are compared in the last section with hydro-based

simulations.

6.5.1 π−π HBT and blast wave fits

The blast wave model, described in Section 3.3.1, has become a standard tool in de-

scribing the particle emission based on the information from measured spectra, v2 and

femtoscopy[109, 197]. Although the blast wave parameters for the
√
sNN=200 GeV Au+Au

collisions have already been obtained by the STAR collaboration in [111] it is of advantage
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to recalculate them once again as the part of this analysis. The data used for this work is

from new and statistically larger dataset and can provide a good cross check of the previous

analyses. More importantly for the π−Ξ correlations, we use different (larger) centrality

bins and the obtained blast wave parameters can be used to parametrize the source of pions

in the calculations of π−Ξ correlation function within the same centrality bins. Since for

comparisons with models we only use the highest statistics
√
sNN=200 GeV data, the blast

wave model also fitted only to the
√
sNN=200 GeV π−π data.

Centrality (%) T (MeV) ρ0 R (fm) τ (fm/c) ∆τ (fm/c)

0–10 98 ± 2 1.02 ± 0.01 12.6 ± 0.1 8.5 ± 0.2 2.55 ± 0.15
10–40 106 ± 2 0.93 ± 0.01 10.4 ± 0.1 6.8 ± 0.1 1.98 ± 0.10
40–80 120 ± 2 0.76 ± 0.01 7.1 ± 0.1 4.5 ± 0.2 1.36 ± 0.14

Table 6.4: Extracted parameters from a blast wave fit to pion HBT radii at
√
sNN=200 GeV.

The measured π−π radii were already shown in the Figure 6.6. The obtained results

together with measured spectra of pions, kaons and protons[67] and v2[91] at the same energy

were used, similarly as in [111], to obtain the blast wave parameters. Since HBT results with

respect to the event plane are not available we can fit only 5 blast wave parameters: T, R,

ρ0, τ , and ∆τ . The extracted parameters are presented in Table 6.4 for the three centrality

bins used in this analysis.

To compare with previous results of [111] a comparison of the obtained blast wave pa-

rameters from this work and from [111] is presented in Figure 6.14. As can be seen the newly

obtained parameters agree well with the previous measurements. The obtained temperature

T is little higher than the published one, but this parameter is mainly driven by the measured

spectra. If, for example, only spectra of pions was used in the fit the extracted T would be

lower while other parameters would change only marginally.

6.5.2 1-dimensional π−Ξ correlation functions

Using cuts and procedures described in the previous section we have obtained correlation

functions for each of the charge combinations of π±−Ξ± pairs for the three centrality classes as

defined in the Table 6.2 and Table 6.3. Purity-corrected 1-dimensional correlations functions

C(k∗) are presented in Figure 6.15 as a function of k∗ = |~k∗| for the Au+Au collisions

at
√
sNN=200 GeV and

√
sNN=62 GeV. All correlation function are normalized to unity

in a region where no FSI effects are present. Since the correlations due to FSI effects

may reach in our case to more then 150 MeV/c the normalization region was chosen to

be 200 MeV/c < k∗ < 400 MeV/c.

For all charged combination the low k∗ region (k∗ < 0.05 GeV/c) of the correlation

function is dominated by the Coulomb interaction - positive(attractive) for unlike-sign and
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Figure 6.14: Comparison of blast wave parameters of obtained from fits to π−π HBT. In
blue are previously published results in [111] and in red are results obtained in this analysis.
While vertical error bars show statistical errors the horizontal ones depict merely width of
the used centrality bin.

negative(repulsive) for like-sign pairs. Since both particles are hadrons they interact also

strongly. The strong interaction between π and Ξ is not well known, but the total cross

section of interactions involving multi-strange baryons is often assumed to be small [198,

199, 200, 84, 201]. One can seen in the Figure 6.15 that in the case of unlike-sign π−Ξ pairs

there is pronounced peak at k∗ ' 150 MeV/c. This peak corresponds to strong interaction

between π and Ξ via a resonance. For two particle decay the k∗ used in the correlation

function is the same as the decay momentum of the system in its CMS. The k∗ is then

directly connected to the invariant mass Minv of the system by

k∗ =
[M2

inv − (mπ −mΞ)
2]1/2[M2

inv − (mπ +mΞ)
2]1/2

2Minv
. (6.12)

The peak at k∗ = 150 MeV/c then corresponds to Ξ∗(1530)0 resonance [13]. Although the

Ξ∗(1530) is a well established resonance this analysis is a first observation of this resonance

in the high track multiplicity environment of ultra-relativistic collisions of heavy ions.

The presence of the Ξ∗ in the correlation function can be checked using 6.12 by creating
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Figure 6.15: Results on 1-dimensional π−Ξ correlation function for all combinations of
charged π±, Ξ± in three centrality bins in of Au+Au collisions at (left)

√
sNN=200 GeV and

(right)
√
sNN=62 GeV. The correlation functions have been corrected for purities of the π,

Ξ samples. All correlation functions are normalized at 200 MeV/c < k∗ < 400 MeV/c.

a background-subtracted invariant mass spectrum of the unlike-sign π−Ξ system. This

mass spectrum is easily obtained as a “by-product” of the femtoscopic analyses by using

subtraction instead of division in the formula 3.39, as function of Minv instead of k∗. Such a

mass spectrum for mid-peripheral bin (10-40%) at
√
sNN=200 GeV with combined statistics

of π+−Ξ− and π−−Ξ+ pairs is shown in Figure 6.16. This plot, since it covers large interval of

Minv (and thus large interval of k∗) presents a good opportunity to demonstrate the influence
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Figure 6.16: Invariant mass of the combined unlike-sign π−Ξ pairs after subtraction of
background distribution created by event-mixing. Two different backgrounds were used:
(black) with events mixed within groups with similar multiplicity and vertex position and
(red) with additional grouping in the orientation of the event plane.

of used event mixing technique discussed before in Section 6.2.3. The plot contains results

from the same dataset obtained with two different methods of event-mixing used to obtain the

uncorrelated background for subtraction. The difference between the two presented results

lies in the use of event plane as one of the three event mixing parameters (the other two being

multiplicity and main vertex position). While both results in Figure 6.16 show a clear peak at

mass corresponding Ξ∗(1530)0, the events that are mixed in bins with similar orientation of

event plane (red color) show significant improvement in the shape of the background outside

of the mass peak. This is of importance for the construction of correlation functions as this

is the region used for the normalization of the correlation function. Proper normalization of

the correlation function has in turn strong effect on the quality of fits and extraction of the

source sizes.

Returning back to the correlation functions, we can see in Figure 6.15 that the results

within the precision given by error bars agree well between like-sign π−−Ξ−, π+−Ξ+ and

unlike-sign π−−Ξ+, π+−Ξ− pairs. Therefore to increase further the available statistics we

combined together data for like and unlike-signed π−Ξ pairs into two combined correlation

functions. This summation must, of course, be done on the level of numerator and denom-

inator distributions of 3.39. The centrality dependence of the combined 1-dimensional like

and unlike-sign pairs is shown in Figure 6.17 for both collision energies. In both of them we

can observe that while the Coulomb part still suffers by small statistics for most of the data

and shows rather small sensitivity to centrality of the collision, the correlation in the Ξ∗ peak

manifests significant dependency on the centrality. Its strength increases from central to the

peripheral collisions as we expect - the correlation being strongest for the smallest system.

Since the Ξ∗ peak exhibits good sensitivity to the size of the source we can compare

the unlike-sign correlation functions in this region to qualitatively study the dependence of
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Figure 6.17: Top: The centrality dependence of the correlation function at
√
sNN=200 GeV

for combined (a) unlike-sign (b) like-sign π−Ξ pairs. Bottom: The centrality dependence
of the correlation function at

√
sNN=62 GeV for combined (e) unlike-sign (f) like-sign π−Ξ

pairs.

the source size on the collision energy, which would otherwise be hard to compare via the

statistically impaired Coulomb part. Correlation functions for unlike-sign pairs for both

energies and all centralities are directly compared in Figure 6.18. One can see that we do

not observe a significant dependence of the π−Ξ source on the collision energy that would

manifest in the different magnitudes of the Ξ∗ peak. This result is similar to that obtained

in π−π measurements [109] that also show only weak increase of the measured pion radii on

the energy of the collisions.
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Figure 6.18: Comparison of unlike-sign correlation functions for all three centralities at√
sNN=200 GeV and

√
sNN=62 GeV.

6.5.3 Emission asymmetry

As mentioned before in Section 2.3 current data suggest than Ξ develops substantial flow

and possibly decouples from the system before other particles. Both of these phenomena

can create an asymmetry between average emission point of pions and Ξs. As described

in Section 3.1.4 the information about this shift is contained in the angular part of the

3-dimensional correlation function C(~k∗) = C(k∗, θ, ϕ). To access this information a de-

composition 3.43 of C(~k∗) into the spherical harmonics is used. The coefficients from the

decomposition which are of interest to us (A0,0 and A1,1) are presented in Figure 6.19. Be-

cause of the available statistics we can only extract the information about the shift, contained

in the A1,1 coefficient, from the data at
√
sNN=200 GeV collision energy. In the dataset at

√
sNN=62 GeV the coefficient A1,1 is dominated by statistical errors. Out of the available

three centrality bins at
√
sNN=200 GeV the statistically most significant is the most central

one. In this centrality bin we can use not only the Ξ∗ part of the correlation function, but

also the low-k∗ Coulomb region.

6.5.4 FSI calculations

The easiest way to learn something from the measured correlation function is to compare

it qualitatively with a calculated theoretical prediction using some simple prescription or

model for the emission function. To calculate the correlation function according to 3.33

we need to understand the two-particle interaction - be able to calculate the two-particle
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Figure 6.19: Centrality dependence of the coefficients A0,0 and A1,1 of spherical decomposi-
tion of the 3-dimensional π−Ξ correlation function in Au+Au collisions at

√
sNN=200 GeV.

Data are combined for a) like-sign and b) unlike-sign π−Ξ pairs.

wave-function 3.6. Calculation of π−Ξ interaction in the final state is highly non-trivial as

the two particles interact not only by Coulomb interaction, but also via a strong interaction

going trough a resonance. In this case the strong interaction cannot be simply neglected as

it is done for example in the system of identical pions.

At this moment there exist three models for calculating the π−Ξ FSI which include

the Ξ∗ (1530) resonance. The first model was developed by Pratt and Petriconi [202] and

has been used in most of our published studies [203, 204]. The newer model was made by

Kerbikov and Malinina [205, 206] and the most recent model was made Lednicky [207]. In

this work we use the model of Pratt&Petricony which agrees in results well with model of

Lednicky.

Gaussian source

The simplest model for the two-particle emission function SPS(r, q) is the Gaussian

parametrization 3.27. In the Gaussian parametrization there is no correlation between parti-

cle momenta and emission coordinates. The emission function hence factorizes into momen-
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tum and position distributions. In our case of the two non-identical particles with a large

difference in mass we will use Gaussian parametrization of the emission function SPS(r
∗,k∗)

in the center of mass system (CMS) of the of pair. The parametrization is analogous to 3.27,

but with separate radii for the two particle species:

SPS(r
∗,k∗) ∼ exp

− (r∗out −∆r∗out)
2

2
[
R2

π,out +R2
Ξ

]2 − r∗2side

2
[
R2

π,side +R2
Ξ

]2 −
r∗2long

2
[
R2

π,long +R2
Ξ

]2
 . (6.13)

To compare the measured results with calculations we have used for pions the Gaussian

radii obtained from the measurements of the π−π HBT in Figure 6.6. To describe the whole

source, for given centrality, with one set of radii we use the parameters measured in the

lowest kT bin (150 − 250 MeV/c) in Figure 6.6 since this corresponds to the average pT of

pions in this analysis. As the standard π−π HBT measurements are done in the LCMS

system the Rout radii have to be adjusted by corresponding γ factor for the pair CMS. For

the Ξ we have used a single radius, estimation of which is based on the assumption of the

flow of Ξ. If the Ξ flows as other particle species the size of its source (homogeneity region) is

expected to follow similar ∼ 1√
mT

scaling as observed for other particle species in Figure 3.9.

The radius can be estimated as ∼ 2 fm. Similar prediction can be obtained from blast wave

parametrization under the flow assumption. Note that the radii actually depend on the pT

and since we don’t differentiate in pT this is a sufficient estimate. Moreover since the Ξ

source is small the overall extent of the source in 6.13 will be dominated by the pion radii.

The Gaussian radii used for calculations are shown in Table 6.5.

Centrality (%) Rπ,out Rπ,side Rπ,long ∆r∗out RΞ

0–10 10.2 5.4 7.1 -8.0 2
10–40 8.9 4.5 5.9 -6.0 2
40–80 6.3 3.3 4.7 -4.0 2

Table 6.5: Parameters for calculations of the π−Ξ correlation function with the Gaussian
description of the source in the pair CMS at

√
sNN=200 GeVcollision energy.

In Figure 6.20a is shown the calculation using the Gaussian radii from Table 6.5 with

the two sources having no average relative shift in the out direction, ∆r∗out= 0. From the

already presented π−Ξ correlation function we know that there is an actual relative shift

present in the system as the coefficient A1,1 is non-zero. To account for this we introduce

”by hand“ a shift in the out direction ∆r∗out between pions and Ξs. The orientation (sign)

of the ∆r∗out is chosen negative which in our notation corresponds to the case of Ξs emission

coordinates being positioned more to the outside of the source. The values of the chosen

∆r∗out are also in the Table 6.5. The results of the calculations after introduction of the shift

∆r∗out are shown in the Figure 6.20b.
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Figure 6.20: Comparison of the measured correlation functions with FSI calculations using
Gaussian parametrization of the source. (a) no shift in the out direction and (b) introduced
shift between average emission point of π and Ξ. The used parameters are in Table 6.5.

The calculations with ∆r∗out= 0 in Figure 6.20a show similar behavior as the measured

data. The correlation function exhibits small sensitivity to the size of the source in the

Coulomb (low k∗) region and high sensitivity in the Ξ∗ region. It must be pointed out that

however that the calculated correlation function shows discrepancy when compared to the

real data. Theoretical calculations in the Coulomb part lie at or slightly bellow the data for

all the centralities which would suggest that the actual real source is smaller than the one

used in the calculations. However in the much more sensitive Ξ∗ region the calculations,

in all centrality bins, strongly overshoot the data. This would mean the opposite - that the

real source is actually larger. Since we have set the ∆r∗out= 0 the coefficient A1,1 vanishes in

this calculations.

We can try to improve the agreement between data and calculation by an introduction of

a non-zero shift ∆r∗out (Figure 6.20b). The strength of the correlation in the A0,0 coefficient

exhibits the same behavior as in the previous case. The A1,1 is now non-zero and we see

that it qualitatively agrees with the data in the low k∗ region. This shows that indeed the

shift observed in the measured data is oriented so that the Ξs are emitted on average more
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toward the outer edge of the source - as suggested by models containing collective flow.

Problem is present again in the resonance region - here the coefficient A1,1 has an opposite

sign compared to the low k∗ part. Even though this may naively suggests an interpretation

of different sign of the shift between Coulombicaly and strongly interacting pairs the real

reason for this discrepancy is that the π−Ξ vawefunction describing the strong interaction

via Ξ∗ resonance depends non-trivially on the angle θ∗ between ~k∗ and ~r∗ [207]. The

distribution of θ∗ in each ~k∗ bin is given by the relation between momenta and emission

coordinates of the particles that contribute to the bin. As the simple Gaussian model of

the emission function lacks any x-p correlations it cannot describe properly changes of the

source homogeneity lengths and relative shifts with pT and k∗.

For a better description we need to turn to models that describe betters dynamics of the

system and include such correlations.

Blast wave parametrization

The blast wave model has been highly successful in describing the π−π measurements. Flow

induced x-p correlations included in the model seem to describe well the mT dependence of

the pion HBT radii (Figure 6.6 and Table 6.4). Since the collective flow of multi-strange

baryons is one of the main motivations for this analyses, it is of interest to see if the same

model can be used to describe the Ξ source as well.

Even more interesting question then is if using the hydro-inspired blast wave model we

can distinguish two different scenarios of multi-strange baryon production. The first one is

what we call the “thermal freeze-out”. In this scenario the Ξs undergo the same evolution as

the rest of the system including the hadronic phase in which they interact with the rest of the

system (predominantly pions) and decouple at the same time as pions. The second scenario

is the so called “early freeze-out” of multi-strange baryons as suggested by the results on

multi-strange baryon spectra and v2 presented in Section 2. In such a scenario the multi-

strange baryons are emitted at or shortly after the chemical freeze-out of the system and do

not participate in the subsequent evolution of the hadronic matter.

In the first case of thermal freeze-out we would assume that the freeze-out configuration

of the Ξ source can be described with the similar blast wave parameters as the pion source

in Table 6.4. In the case of early freeze-out the configuration of the Ξ source, described by

the blast wave model, will be different from the source of pions. In this case we can make

only reasonable assumptions about what would be the parameters of the blast wave model

describing such a scenario. If the Ξs decouple at earlier time we can expect the source being

smaller and the temperature higher. The temperature parameter for the case of early freeze-

out was set to values extracted from measurements of spectra of multi-strange baryons. The

parameters used for calculating the theoretical correlation functions using the blast wave
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0-10% 10-40% 40-80%
thermal early thermal early thermal early

T (MeV) 98 156 106 156 120 156
ρ0 1.02 0.75 0.93 0.75 0.76 0.75
R (fm) 12.6 3. 10.4 2.5 7.1 2.
τ (fm/c) 8.5 2. 6.8 2. 4.5 1.5
∆τ (fm/c) 2.55 0.05 1.98 0.05 1.36 0.03

Table 6.6: Blast wave parameters used for FSI calculation at
√
sNN=200 GeV collisions

energy. The parameters describing thermal freeze-out are from fits to pion data[111]. The
parameters for the early freeze-out are altered in accordance with data on multi-strange
spectra and v2[92].

source parametrization for both scenarios are in Table 6.6.

The inclusion of the x-p correlation in the blast wave model has a consequence for the

procedure of the actual calculation of the correlation function. Because of the changing ac-

ceptance of the detector with pT and η of tracks, plus the varying reconstruction efficiency

of Ξ the contribution of particles with different momenta varies for individual ~k∗ bins (Fig-

ure 6.9). For this reason we cannot take simply the thermal momentum distribution for

each particle or even the momentum distribution from the blast wave model as we would get

different single-particle spectra inside the ~k∗ bins. Instead, in our approach we use a two-

particle distribution created during even mixing technique. This means that as we create the

uncorrelated background distribution of π−Ξ pairs for 3.39 we save the information about

the momenta of both particles. When we calculate the theoretical correlation function we

do not generate the momenta of particles, instead we load the saved pairs and generate only

emission points for the particles of given momenta. Since the statistics in some of the low k∗

bins, especially in the 3-dimensional correlation function, may not be high enough and the

random generation of emission coordinates could cause fluctuations of results from one calcu-

lation to another we generate the coordinate for each used pair multiple times (usually∼50)

and take the averaged value of the FSI.

In the Figure 6.21 are compared blast wave calculations with real data using the same

parameters of the thermal freeze-out for both π and Ξ sources. Compared to the previous

calculations with Gaussian sources the coefficient A1,1 in the region of Ξ∗ is non-zero and

has the same sign as in the region of Coulomb interaction. This demonstrates that the x-p

correlations in the emission of particles are necessary to at least qualitatively describe the

π−Ξ correlation function.

Despite the improvement of the correlation function when using the blast wave model

there is again a significant disagreement in the strength of the correlation signal in both

A0,0 and A1,1 coefficients. While in the Coulomb region the calculated correlation functions
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Figure 6.21: Comparison of the measured correlation function with blast wave calculations
for the thermal freeze-out scenario when both particle species are described by the same set
of parameters.

seems to be at or slightly bellow the measured data the calculation strongly overestimates

both the size (A0,0) and the shift (A1,1) in the Ξ∗ region.

It is then interesting to see if the theoretical prediction will improve when we consider the

early freeze-out scenario of Ξ. In Figure 6.22 are compared the measured correlation functions

from the central and mid-peripheral data with the calculations for the thermal and early

freeze-out scenarios. The former is the same as in the Figure 6.21 and the latter is obtained

by changing the blast wave parameter for Ξ to those marked in Table 6.6 as “early”. Even

though we have introduced quite significant changes to the blast wave parameters describing

the Ξ early freeze-out when compared to the thermal (late) one the change in the calculated

correlation function is rather subtle. There is only a small increase in absolute magnitude

of the A0,0 and A1,1 coefficients in the Ξ∗ region. The most notable difference between the

two scenarios is in the Coulomb part of the A1,1 coefficient.

To understand why a big change in parameters of the blast wave model generates only

a small change in the calculated correlation function we need to take into an account equa-

tion 3.38. Here the shift between the average emission points of the two particle species

is a combination of a space and time component. When we consider the early freeze-out
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Figure 6.22: Comparison of the measured correlation function with blast wave calculations
for the thermal freeze-outans early freeze-out scenarios for central and mid-peripheral data
at

√
sNN=200 GeV collisions.

scenario we expect the Ξs to decouple at earlier time, ∆t̄ > 0. At the same time the Ξs are

emitted from a smaller source, smaller meaning the size of the whole source (parameter R)

not necessarily homogeneity region, thus closer to the center of system. This means that

while ∆t̄ > 0 grows to positive values the ∆x̄out > 0 goes from negative value toward zero.

These both changes may well compensate in the formula 3.38 which explains the relatively

low sensitivity of the correlation function to those two scenarios of Ξ emission. This topic

will be explored more in Section 3.3.2 where an example of such an interplay between spatial

and time component of the shift is shown in Figure 6.34.

Since changing from thermal to early freeze-out of Ξ did not bring , within the blast

wave model, calculations closer to the data we need to consider other explanations. One

possible explanation may lie in the absence of the correlation between emission position and

emission time; the x-t correlation. Most recent theoretical advances[122, 147, 208] show that

x-t correlations are indeed important in explaining the π−π HBT measurements, namely

the Rout/Rside ratios. The inclusion of the x-t correlations in the emission function of both

π and Ξ, as it is present in detailed hydrodynamical models, could in future lead to a better

agreement between the calculated and measured correlation function.
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6.5.5 Coulomb fitting

To understand better the correlation function and its implication for the study of the emission

of particles in the heavy-ion collisions we need to get quantitative information by fitting the

data. In the previous section we have demonstrated that we cannot consistently explain at

the same time the Coulomb and strong interaction part of the correlation function using

neither simple Gaussian model nor the more advanced blast wave model of the emission.

We have also demonstrated that relying on the theoretical calculation in Ξ∗ region may be

principally problematic as it is not clear what amount of correlation needs to be present in

the model to correctly describe the changing properties of the homogeneity region with pT

and ~k∗ of the pair. Moreover theoretical framework for calculating the FSI was developed

for k∗ ' 0 and it is a question to what degree the smoothness approximation 3.19 in 3.32

stays valid in the Ξ∗ region. Also the strong interaction of π and Ξ is lot less known than

the Coulomb interaction.

For these reasons we are going to use for fitting only the Coulomb low-k∗ part of the

correlation function together with Gaussian description of the two-particle source. The

procedure of using the Gaussian source in the CMS of the pair (pair rest frame - PRF) is

a standard fitting procedure used in most of the femtoscopic measurement concerning non-

identical particles [109, 197, 203, 149, 150]. For the purpose of fitting source is described

by Gaussian shape of the two-particle relative emission function SPS(r
∗,k∗) in the PRF

similarly as in 3.27. Because of the low statistics of the available data we assume that all

three radii are equal Rout = Rside = Rlong = R and fit only one radius R and a parameter

defining the shift in the out direction ∆r∗out= 〈r∗out〉. The two-particle emission function them

will be:

SPS(r
∗,k∗) ∼ exp

[
−(r∗out −∆r∗out)

2

2R2
− r∗2side

2R2
−
r∗2long
2R2

]
. (6.14)

Note that compared to 3.27 the parameter R is a Gaussian radius of the whole two-particle

emission function (R2 = R2
π +R2

Ξ).

The procedure of finding optimal parameters of the source model starts with a calculation

of the theoretical correlation function in similar way as in the previous section. For a given set

of parameters (R, ∆r∗out) of source model the correlation function is calculated using saved

momenta of particle pairs and the relative emission coordinates r∗ are generated according to

the source model 6.14. Again for each pair the coordinates are generated multiple times and

the calculation is averaged over the sample. This Monte Carlo calculation of the theoretical

correlation function is time consuming and even with the averaging procedure we cannot

completely avoid small random fluctuation of results. For this reason we cannot use the

automatic optimization programs to do the fitting. Instead, finding the optimum parameters

is done by creating a discrete χ2 map in (R, ∆r∗out) parameter space. Since moving and
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Figure 6.23: Results of the Coulomb fit to the π−−Ξ+ correlation function in the most central
Au+Au collision at

√
sNN=200 GeV. Left: the calculated χ2 map with a 1-σ contour at

χ2
min + 1. Right: comparison of the measured data and the fitted function in the Coulomb

region. The fit range of k∗ ≤ 60 MeV/c was used.

calculating the theoretical correlation function in the (R, ∆r∗out) space is time consuming

the creation of the optimal χ2 map is done on two passes. In the first pass only a coarse

grained map is created in which the approximate position of the minimum is found. After

that, map with finer binning is created in the vicinity of the minimum. The minimization

system MINUIT [209] is then used to find minimum and extract proper errors from the fit

in the map.

An example of a typical result from this fitting procedure is shown in Figure 6.23. Both

the measured and calculated correlation functions are normalized to 1 in the region of

250 < k∗ < 300 MeV/c. To stay clear of any effects of the strong interaction in the Ξ∗

peak the χ2 is calculated only from the bins with k∗ ≤ 60 MeV/c. Which correlation func-

tion we are able to fit and the quality of the fit results depend on the available statistics.

In our highest statistics bin, the most central 0-10% events, we are able to perform separate

fits of each of the π−Ξ charge combinations. The fit results are presented in Figure 6.24

in the form of 1-σ and 0.2-σ contours in the (R, ∆r∗out) plane corresponding to lines where

the calculated χ2 reaches minimum plus 1 and 0.2 respectively. The extracted values of R

and ∆r∗out are summarized in Table 6.7 together with results from other fits. With a nat-

ural assumption that the size of the π−Ξ source is the same for all charge combination

we extract a combined result of R = 4.7 ± 0.5 fm and ∆r∗out= −5.9± 0.9 fm. We can try

to apply similar procedure to the mid-peripheral bin of centrality 10− 40%. The results in

Figure 6.25 and Table 6.7 tell us that the fits to the individual correlation functions suffer
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from excessive statistical errors because of the low available statistics. We can improve the

results by fitting at the same time the combined like and unlike-sign correlation functions.

For the mid-peripheral bin this procedure yields R = 4.2±0.7 fm and ∆r∗out= −5.9± 1.4 fm.

The much lower statistics in the most peripheral bin of 40 − 80% allows to only use the

combined data fit. The quality of the fit in Figure 6.26 is not very good, but still allows to

constrain the values to R = 0.6± 1.5 fm and ∆r∗out= −2.8± 1 fm.
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Figure 6.24: Results of the Coulomb fit in the most central 0-10% data for all π−Ξ charge
combinations. By a thin and thick line are drawn 1-σ and 0.2-σ contours of the χ2 fit.
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correlation function in the most-peripheral data (40-80%). The 1-σ and 0.2-σ contours of
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Before continuing further we should note a connecting between the obtained π−Ξ results

and the previous π−π measurement. The π−π measurements in Figure 6.6 give the size

of the source in the most central collision R = (6 − 7) fm (depending on pT ). Comparing

this with the π−Ξ results of R = 4.7 ± 0.5 fm and ∆r∗out= −5.9± 0.9 fm already tells as

an important information. Since the R in π−Ξ is a convolution of the sizes of the source

of pions and Ξs, the π−Ξ source being similar in size to the source of pions means that the

size of the Ξ source is small. This together with negative and large shift on the order of

the size of the whole source suggest that the source (meaning homogeneity region) of the

Ξ is significantly smaller than that of pions and shifted to the edge of the system. This

observation is in good qualitative agreement with what is predicted by models that include

significant collective flow of multi-strange baryons.

One of the most challenging parts of this analysis is the handling of purity corrections.

Before any final conclusion can be drawn we must study and understand the effects of

the purity correction on the final results. Here we will try to access the systematic errors

connected to the performed purity corrections. In the Section 3.2.1 was discussed the λ

parameter that is used to regulate the strength of the correlation function when fitting π−π
correlation function. We have used this parameter as a measure of purity of used π. In

the Section 6.3 the π−Ξ correlation function was already corrected for the effects of π

and Ξ purities individually in each ~k∗ bin. No further adjustments of the strength of the

correlation function should then be necessary during the fit. Because both the R parameter

of the fit and the purity correction affect the overall strength of the correlation function

the R parameter will be affected by any inaccuracy in the purity correction procedure. We

can test the quality of the correlation function and estimate systematic errors due to purity

corrections by introduction of the λ parameter in the fit in a similar way as it is done π−π
HBT. In the case of perfectly purity corrected correlation function λ should be 1. In this

way of fitting the obtained λ will not be a measure of non-purities as in 3.40, but rather a ~k∗

-independent multiplicator of the corrections in Section 6.3. For this reason the λ may be,

unlike in π−π fits, greater then 1. Any inaccuracy in purity correction should hence lead to

a deviation from unity. The convergence of the fit in the vicinity of λ = 1 can be taken as

an indicator of the quality of the used purity-corrected correlation function.

After the introduction of λ parameter we obtain 3D χ2 maps from the fits. A two

dimensional slices from such a map for a π−−Ξ+ correlation function in the most central

data are shown in the Figure 6.27. One can see that in the R−∆r∗out plane the map is

quite similar to the one in Figure 6.23. In the R− λ the map shows indeed strong relation

between the two extracted parameters. To better see the effects of the fitting we present in

Figure 6.28 the results of the fits for all correlation functions in the most central bin. The

actually extracted values of the fits are included in the Table 6.7 together with previous

results for comparison. These results show that when the λ is allowed to vary it converges
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Figure 6.27: Slices from calculated χ2 map of Coulomb fit to the π−−Ξ+ in the most central
Au+Au collisions at

√
sNN=200 GeV. The χ2 mas is calculated in three dimensions: R,

∆r∗out, and λ. The 2-dimensional slices of the map are shown at the fits optimal value of the
remaining variable. The line depicts 1-σ contour around minimum.

to values in range of 0.9 . λ . 1.15. We can take that as an estimate of the precision of the

performed purity corrections. When we combine the measurements of R and ∆r∗out from all

the charge combinations we arrive at values of R = 5.4± 0.5 fm and ∆r∗out= −5.9± 0.9 fm.

From these results we see that the introduction of λ as an additional parameter brought

change to the extracted Gaussian radii on the order of 10− 20%.

We can attempt to use similar method for the mid-peripheral data set. The results are

shown in Figure 6.29. This figure is merely shown to demonstrate that we also see the relation

between R and λ, but the available statistics is too low to constrain the fits well after the

introduction of one more fit parameter. For the mid-peripheral and peripheral dataset it is

hence better to use the previous fit results with only R, and ∆r∗out fitted (Figure 6.25 and

6.26) and use the estimate of the systematic error obtained from central data. Final results

of the fitting procedure for combined datasets with quoted systematic errors are summarized

in Table 6.8.
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2D fit 3D fit with λ
data: R[fm] ∆r∗out[fm] χ2/NDF λ R[fm] ∆r∗out[fm] χ2/NDF

0-10% centrality
π−−Ξ+ 6.2±1.1 -6.5±2.0 169.14/150 0.91±0.11 5.1±1.3 -6.5±2.0 168.97/150
π+−Ξ− 5.4±0.8 -8.8±1.4 157.41/150 1.05±0.11 5.8±1.3 -8.8±1.4 157.32/150
π+−Ξ+ 3.9±0.7 -3.5±1.8 153.77/150 1.13±0.10 4.7±0.8 -4.1±1.8 153.38/150
π−−Ξ− 4.3±0.7 -5.3±1.9 172.21/150 1.14±0.09 5.1±0.8 -5.9±1.9 171.32/150
combined 4.7±0.5 -5.9±0.9 5.4±0.5 -5.9±0.9

10-40% centrality
π−−Ξ+ 5.5±2.0 -10.2±3.6 146.19/150
π+−Ξ− 3.2±1.7 -5.9±1.8 156.14/150
π+−Ξ+ 4.5±1.7 -5.9±3.4 150.23/150
π−−Ξ− 3.5±1.0 -2.1±2.1 158.36/150
combined 4.2±0.7 -5.9±1.4 616.66/600

40-80% centrality
combined 0.6±1.5 -2.8±1.0 677.05/600

Table 6.7: Result of the fit to the Coulomb part of the π−Ξ correlation function from
Au+Au collisions at

√
sNN=200 GeV. All presented errors are statistical errors of the fit.

centrality R[fm] ∆r∗out[fm]

0− 10% 5.4±0.5±0.8 -5.9±0.9
10− 40% 4.2±0.7±0.8 -5.9±1.4
40− 80% 0.6±1.5±0.8 -2.8±1.0

Table 6.8: Final results of the measured Gaussian femtoscopic radii and relative emis-
sion asymmetries in the CMS of the pair for the π−Ξ system in Au+Au collisions at√
sNN=200 GeV. Systematic errors for ∆r∗out were found to be negligible.
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6.6 Comparison to HYDJET++ model

In the previous sections we have shown that we observe a correlation signal in two regions

caused by Coulomb and strong interaction, but we are not able to explain them both at the

same time using a simple emission models such as Gaussian or blast wave parametrization.

We also understand that the measured sizes and shifts of the homogeneity regions are strongly

influenced by transverse expansion of the system. Moreover the observed correlation function

is also influenced by decays of resonances that may significantly change (prolong) the emission

function. In our case the contribution and influence of resonances on the correlation function

is of interest as the Ξ∗0(1530) is a long lived resonance from which originates significant part

of the observed Ξs.

In this section is studied influence of the collective flow and Ξ∗ resonance on the size

of the homogeneity length and shift between average freeze-out space time points of Ξ and

π. For this we employ hydrodynamics-parametrized statistical hadronization model HYD-

JET++ which was already described in Section 3.3.2. Similarly as in previous sections we

are interested in comparison of different scenarios of emission of multi-strange baryons. For

the comparison with simulation we use the data from the most central Au+Au collision. In

the HYDJET++ simulation we implement three scenarios: thermal freeze-out in which the

particle emission occurs much later after the chemical freeze-out Tch < Tth; chemical freeze-

out in which the particle emission coincides with, or is shortly after, the chemical freeze-out

Tth = Tch. In addition to these we are able to introduce into HYDJET++ early freeze-out a

combined scenario (used later in Section 6.6.3) when Ξ and Ξ∗(1530) are emitted already at

chemical freeze-out while other particles π,K, p are emitted later at the thermal freeze-out.

chemical(Tth = Tch) thermal(Tth < Tch) STAR BW fit

Tch (MeV) 165 165 165
Tth (MeV) 165 100 97
µB (MeV) 28 28 28
µS (MeV) 7 7 7
µQ (MeV) -1 -1 -1
γS 1 1 1
τ (fm/c) 7.0 8.0 8.9
∆τ (fm/c) 2.0 2.0 3.16
R (fm) 9.0 10.0 13.0
ηmax 2 2 2
ρmax 0.65 1.1 1.03

Table 6.9: Parameters of the HYDJET++ model for simulation of particle emission at
thermal and chemical freeze-out. The STAR BW denotes implementation of blast wave
parameters from π−π HBT into HYDJET++ model.
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The parameters of HYDJET++ for the chemical and thermal freeze-out are summarized

in Table 6.9. The parameters for these two scenarios were estimated to reasonably reproduce

particle spectra and ratios as it will be described in more details in the next section. In

addition, one more set of parameters is used which corresponds to values obtained from blast

wave fits to STAR data in [111]. For these scenarios we first analyze particle ratios and mT -

spectra to see which parametrization describes best the particle production. After that we

study the space-time differences of the Ξ and π emission points including the influence of the

relative contribution of Ξ from Ξ∗(1530) resonance decay on the π−Ξ emission asymmetries.

6.6.1 Ratios of hadron abundances and mT -spectra

The particle abundances in heavy ion collisions in a wide energy range can be reasonably

described by statistical hadronization models based on the assumption that the produced

hadronic matter reaches thermal and chemical equilibrium. The HYDJET++ model has

already been successfully applied [124] to describe RHIC data on various particle ratios

produced in central Au+Au collisions near mid-rapidity at
√
sNN=200 GeVwith parameters

similar to those used in this work: µ̃B = 0.0285 GeV, µ̃S = 0.007 GeV, µ̃Q = −0.001 GeV, the

strangeness suppression factor γs = 0.8 and the chemical freeze-out temperature Tch = 0.165.

However first STAR preliminary measurements [210] of the Ξ∗(1530) spectra and their yields,

Figure 6.30, have shown substantially higher Ξ∗(1530)/Ξ− ratio when compared to statistical

model calculations.

Before utilizing the model for analysis of femtoscopic observables it is necessary to check

an agreement in description of basic particle production. In Figure 6.31 themT -spectra of π+

and Ξ± for the three different parameter sets are compared with STAR data [67, 75]. One can

see that π,K, p spectra are better described within the thermal freeze-out scenario while the Ξ

spectrum is better described within the chemical freeze-out scenario. The HYDJET++ used

with blast wave parameters from [111] overpredicts the absolute yields, because of the larger

volume of the system (R = 13 fm). The slope of the pT -spectra of Ξ∗(1530) [210] is also much

better described within the chemical freeze-out scenario, but the model underestimates the

Ξ∗ /Ξ ratio (>2 times), similarly as do other statistical models (see Figure 6.30, and [210]).
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Figure 6.30: STAR preliminary results from [210] on Ξ0(1530) spectra and yields from from
Au+Au collisions at

√
sNN=200 GeV. (a) corrected Ξ∗ spectra and (b) Ξ∗/Ξ ratios at three

different centralities. (c) Comparison with thermal fit(blue) to the STAR data(black).
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Figure 6.31: The mT -spectra of π+,K+, p and Ξ± calculated with HYDJET++(FASTMC)
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6.6.2 π−π femtoscopic radii

If the HYDJET++ model is to describe the π−Ξ correlation it first needs to be checked

that it describes well the source of pions. This can be done easily using the available high

precision π−π data. We can test the imprint of the scenarios under study on the predicted

homogeneity lengths.

With this motivation in mind we can extract from the simulation π−π HBT radii for

both cases. The procedure for extraction of the femtoscopic radii from simulation is simple

in the case of identical non-interacting pions. The correlation function is calculated from

pairs of pions via 3.20. Only pions from similar kinematic region (η, pT ) as in the real data

are used. In the case of π−π and under the assumption of Gaussian source, the correlation

function can be expressed explicitly by 3.41. The radii and λ parameter are then obtained

simply by fitting the correlation function by 3.41.

The predictions from HYDJET++ for π−π HBT are presented in Figure 6.32 for the two

different scenarios of freeze-out as well as for the HYDJET++ with blast wave parameters.

The best description of the data seems to within the thermal freeze-out scenario, while the

HYDJET++ with blast wave parameters clearly over predicts the measured radii. Most

notably good agreement of the λ parameter with the data is reached when the pions from

weak decays are included.

6.6.3 Space-time differences of the Ξ and π emission points

The results in Figure 6.31 and 6.32 rule out the possibility to use the same parameters for

the HYDJET++ simulation as those obtained from blast wave fit. The simulations also

indicate that the mT -spectra of different particle species and the femtoscopic radii can’t

be described with the same set of parameters. To solve this problem we need to use the

third early freeze-out scenario: Ξ, Ξ∗(1530) are emitted at the chemical freeze-out, while the

other particles are emitted later at the thermal freeze-out. In this section we will study the

separation between particles emission points in the out direction in CMS of the pair and

compare between the different scenarios.

As it was already pointed out in Section 3.1.1, equation 3.38, for symmetrical system

〈r∗〉side = 〈r∗〉long = 0 and the only observable shift is ∆r∗out=〈r∗〉out = γ⊥(∆x̄out − V⊥∆t̄).

The space part of the shift may be influenced by the collective expansion of the system,

while the time component can change by different decoupling conditions between the particle

species.

The preliminary results of measurements of ∆r∗outdone by the STAR experiment for pairs

of π−K,π−p, and K−p in Au+Au collisions at
√
sNN=200 GeV and

√
sNN=62 GeV

are available in [211]. These results are compared in Figure 6.33 with results from the

HYDJET++ simulation. Except for the K−p the simulation is in agreement with the
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Figure 6.32: Comparison of HYDJET++ calculations of π−π HBT radii with real data for
(top) chemical and thermal scenario of freeze-out and (bottom) for calculation with the same
parameters that describe pion source in the blast wave model. In all calculation a variant
with and without inclusion of pions originating from weak decays is presented.

measured data. The statistical errors of the real data are too large to conclusively decide

between the two shown scenarios, but here is slightly better agreement with the thermal

freeze-out scenario which is also favored by the comparison of particles spectra.
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The separations ∆r∗out between the emission points of π and Ξ in the pair’s CMS are

displayed in Fig. 6.34. The values of the shifts were obtained from the simulation using

π−Ξ pairs from particles that underwent the same cuts as in real data. Moreover since

we are comparing the extracted shift to the shift obtained from the Coulomb (low k∗) part

of the correlation function only pairs with k∗ < 40 MeV/c were allowed. For the three

different scenarios are also shown both the time and space components of the total shift.

The biggest difference between the three cases that influences the total shifts comes from the

spacial part of the shift. The spacial shift is negative in all three cases. This corresponds

to Ξ being emitted more on the outside of the whole source, as it is expected if source

undergoes collective transverse expansion in which the Ξ participates. Due to larger value of

the maximal flow velocity and larger system size the Ξs are emitted closer to the surface for

the thermal freeze-out than for the chemical freeze-out and early freeze-out. Since the pions

are light, their average emission position in the out direction is affected by the temperature

of the system. The homogeneity region of pions of given momentum shrinks and moves to

edge with decreasing temperature of the system and increasing transverse momentum of the

particles. The pion smearing is maximal for the chemical freeze-out, so its shift is smallest.

The smallest value of the overall shift between π and Ξ hence occurs for the early freeze-out

scenario because the pion shift is maximal (coincides with thermal freeze-out and Ξ shift is
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minimal (coincides with chemical freeze-out scenario). Although the best description of the

data is obtained within the early freeze-out scenario, the statistical error of the measured

data is too large to conclusively decide.

As previously stated the STAR experiment observes anomalously high Ξ∗ /Ξ ratio in

the central collisions [210] when compared to the predictions of statistical model. Since the

HYDJET++ model contains the production and decay of Ξ∗ we can test the influence Ξ∗ /Ξ

on the predicted emission asymmetry between pions and Ξs.

For the case of early freeze-out the space and time relative contributions to the total

space-time shift between the emission points of π and Ξ in the pair’s CMS are shown in

Figure 6.35 for direct Ξ and Ξ from Ξ∗(1530) decays. The figure demonstrates that while

Ξ∗(1530) decay increases the time and space shifts between π and Ξ the overall shift is not

so strongly affected. The resulting total shift is larger for the direct Ξs then for Ξs coming

only from Ξ∗ decays. The shift obtained by HYDJET++ with ratio Ξ∗/Ξ ∼ 0.25 considered

above is then closer to the direct Ξ. Hence a large deviation of the Ξ∗/Ξ ratio from 0.25 can

lead to an ambiguous interpretation of Figure 6.34 as both increase of Ξ∗/Ξ ratio and early

freeze-out decrease ∆r∗out. To fully disentangle the effects of Ξ∗/Ξ and different freeze-outs

more precise measurements are needed.
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One thing should also be noted and that is that the HYDJET++ is not a transport

model and hence does not contain rescattering in the hadron phase which could possibly also

alter the shifts extracted from the simulations.

Summary

The presented results on the π−Ξ correlations together with Ξ∗(1530) spectra [210] pro-

vide an interesting information about the space-time interval between chemical and thermal

freeze-outs. Combined comparison of the mT -spectra and space-time differences between

HYDJET++ and real data was performed. The best agreement with the data was achieved

within the early freeze-out scenario. However the available statistics is too low to make an

unambiguous interpretation of the results. More precise measurement of the π−Ξ correlation

function as well as Ξ∗/Ξ ratio is thus necessary.
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Chapter 7

Conclusions and Outlook

The main goal of this thesis was to study space-time properties of emission of multi-strange

baryons with a motivation of observing phenomena connected with a collective behavior of

the system created in the collisions of heavy ions. The goal of the thesis was met with

following results.

We have employed the apparatus of particle femtoscopy to measure π−Ξ correlation

functions at two different Au+Au collision energies. This is a first ever femtoscopic measure-

ment that includes multi-strange baryons. In the extracted correlation effects of Coulomb

and strong interactions were observed with the latter going via Ξ∗(1530) resonance. Al-

though the Ξ∗(1530) is a well established resonance this measurement is its first observation

in the environment of high particle multiplicity of the heavy-ion collisions. The measured

correlation function have shown significant centrality dependence, and weak dependence on

the collision energy.

In this thesis a novel technique of decomposition of the correlation functions into spherical

harmonics was used. With this tool we have been able to access information about the

average relative emission asymmetry between pions and Ξ contained in the angular part of

the correlation function. The data reveal that on average the Ξ, when compared to pion, is

emitted in the transverse direction more at the outer edge of the system. This qualitative

observation is in accord with what is expected for a system in which the multi-strange baryons

take part in the collective expansion.

Comparison of the measured results with calculated prediction of the two most commonly

used models of particle emission (Gaussian source, and blast wave) have shown that we are

not able to satisfactorily describe at the same time the correlation originating from Coulomb

and from the strong interaction. This problem has been lately under intense theoretical

study, because the correlation comes from the strong interaction going through resonance,

description of which is not fully known. Also correlations via Ξ∗ is at higher values of k∗

where the existing theoretical framework is pushed to its limits. The clarification of this

131
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issue could in future bring vital information about the dynamics of the system and particle

emission.

To quantify our results further, we have taken the highest statistics dataset

(
√
sNN=200 GeV collision energy) and fitted the data in the region of the Coulomb in-

teraction only. The data were fitted with Gaussian model of the emission function in the

center of mass of the pair. We have extracted, in each centrality bin, values of the total

size of source (homogeneity region) and the value of the average relative shifts in emission

between the two particle species.

From the obtained values we can draw the following conclusions. We observe decrease of

the sizes and the shifts from central to peripheral collisions. Concentrating on the highest

statistics most central data, the measured size of the two-particle π−Ξ source is close to what

is measured for single-particle pion source. This means that the source (homogeneity region)

of Ξ is significantly smaller than that of pions. This together with the large magnitude of

the shift, on the order of the size of the homogeneity region, supports models that include

significant transverse flow of multi-strange baryons. In such models the strong flow-induced

correlation between particle momenta and emission coordinates causes the Ξ source to be

small and significantly shifted toward the edge of the system. The measured results on the

π−Ξ correlations are hence an independent confirmation of the flow of multi-strange baryons

in heavy-ion collisions.

Since the relative emission asymmetries can be influenced not only by transverse flow,

but also by different decoupling conditions of different particle species, we have studied the

influence of the different decoupling scenarios of multi-strange baryons. For this we have

employed hydrodynamics-parametrized HYDJET++ model which includes production of

particles and resonances at chemical equilibrium. Using this model we have studied influence

of the collective flow and Ξ∗ resonance on the shift between average freeze-out space time

points of Ξ and π. The obtained results on π−Ξ correlations, together with information on

Ξ∗(1530) and other particle spectra, seem to favor the so called early freeze-out scenario, in

which Ξ and Ξ∗(1530) are emitted earlier then other particle species - already at chemical

freeze-out while other particles π,K, p are emitted later at the thermal freeze-out. However

the available statistics is too low to make a conclusive unambiguous interpretation of the

results. More precise measurement of the π−Ξ correlation function as well as Ξ∗/Ξ ratio is

thus necessary.

It is then a good news for this analysis that the STAR experiment has already collected

huge sample of Au+Au collision data at
√
sNN=200 GeV during its latest 2010 run. The

STAR has now an order of magnitude larger available dataset: ∼ 300 · 106 minimum bias

and the same amount of centrally triggered data. This advance was possible due to upgrades

of the STAR data acquisition system and the data are expected to be available for physics

within a year. This together with enhanced particle identification by a new time-of-flight
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detector will drastically increase available pair statistics. We expect that it will be possible

to carry out the analyses in narrower centrality bins and perform study of the pT dependence

of the radii. This should bring more information about the dynamics of the system. Such a

large statistics should also allow measurements in a system similar to π−Ξ and that is the

π−Ω. These measurements will shed more light on the physics of multi-strange baryons in

ultra-relativistic heavy ion collisions.
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[119] Zbigniew Chajȩcki. Global Conservation Laws and Femtoscopy at RHIC. PhD thesis,

The Ohio State University, 2009.

[120] I. P. Lokhtin et al. Heavy ion event generator HYDJET++ (HYDrodynamics plus

JETs). Comput. Phys. Commun., 180:779–799, 2009.

[121] Fabrice Retiere. Flow in ultra-relativistic heavy ion collisions. J. Phys., G30:S827–

S834, 2004.



BIBLIOGRAPHY 143

[122] Scott Pratt. Resolving the HBT Puzzle in Relativistic Heavy Ion Collision. Phys. Rev.

Lett., 102:232301, 2009.

[123] I. P. Lokhtin and A. M. Snigirev. A model of jet quenching in ultrarelativistic heavy

ion collisions and high-p(T) hadron spectra at RHIC. Eur. Phys. J., C45:211–217,

2006.

[124] N. S. Amelin et al. A Fast Hadron Freeze-out Generator. Phys. Rev., C74:064901,

2006.

[125] N. S. Amelin et al. Fast hadron freeze-out generator, part II: noncentral collisions.

Phys. Rev., C77:014903, 2008.

[126] Giorgio Torrieri et al. SHARE: Statistical hadronization with resonances. Comput.

Phys. Commun., 167:229–251, 2005.

[127] Dirk H. Rischke and Miklos Gyulassy. The time-delay signature of quark-gluon plasma

formation in relativistic nuclear collisions. Nucl. Phys., A608:479–512, 1996.

[128] Dirk H. Rischke. Hydrodynamics and collective behaviour in relativistic nuclear colli-

sions. Nucl. Phys., A610:88c–101c, 1996.

[129] M. A. Lisa et al. The E895 pi- correlation analysis: A status report. 2005.

[130] M. A. Lisa et al. Azimuthal dependence of pion interferometry at the AGS. Phys.

Lett., B496:1–8, 2000.

[131] P. Chung et al. Comparison of source images for protons, pi-’s and Lambda’s in 6-AGeV

Au + Au collisions. Phys. Rev. Lett., 91:162301, 2003.

[132] H. Appelshauser et al. Hadronic expansion dynamics in central Pb + Pb collisions at

158-GeV per nucleon. Eur. Phys. J., C2:661–670, 1998.

[133] H. Appelshauser et al. Two-proton correlations from 158-A-GeV Pb + Pb central

collisions. Phys. Lett., B467:21–28, 1999.

[134] S. V. Afanasiev et al. Bose-Einstein correlations of charged kaons in central Pb + Pb

collisions at E(beam) = 158-A-GeV. Phys. Lett., B557:157–166, 2003.

[135] I. G. Bearden et al. Space-time evolution of the hadronic source in peripheral to central

Pb + Pb collisions. Eur. Phys. J., C18:317–325, 2000.

[136] M. M. Aggarwal et al. Central Pb + Pb collisions at 158-A-GeV/c studied by pi- pi-

interferometry. Eur. Phys. J., C16:445–451, 2000.



144 BIBLIOGRAPHY

[137] F. Antinori et al. Centrality dependence of the expansion dynamics in Pb Pb collisions

at 158-A-GeV/c. J. Phys., G27:2325–2344, 2001.

[138] John Adams et al. Azimuthally sensitive HBT in Au + Au collisions at s(NN)**(1/2)

= 200-GeV. Phys. Rev. Lett., 93:012301, 2004.

[139] B. I. Abelev et al. Pion Interferometry in Au+Au and Cu+Cu Collisions at RHIC.

Phys. Rev., C80:024905, 2009.

[140] K. Adcox et al. Transverse mass dependence of two-pion correlations in Au + Au

collisions at s(NN)**(1/2) = 130-GeV. Phys. Rev. Lett., 88:192302, 2002.

[141] Stephen Scott Adler et al. Bose-Einstein correlations of charged pion pairs in Au +

Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 93:152302, 2004.

[142] Peter F. Kolb and Ulrich W. Heinz. Hydrodynamic description of ultrarelativistic

heavy-ion collisions. 2003.

[143] Tetsufumi Hirano and Keiichi Tsuda. Collective flow and HBT radii from a full 3D

hydrodynamic model with early chemical freeze out. Nucl. Phys., A715:821–824, 2003.

[144] Ulrich W. Heinz. Early collective expansion: Relativistic hydrodynamics and the trans-

port properties of QCD matter. 2009.

[145] Scott Pratt. Femtoscopy overview and the HBT puzzle. Acta Phys. Polon. Supp.,

1:489–492, 2008.

[146] R. A. Soltz. Review of systematic investigations of the R(out)/R(side) ratio in HBT

at RHIC. J. Phys., G31:S325–S329, 2005.

[147] Scott Pratt. The Long Slow Death of the HBT Puzzle. Acta Phys. Polon., B40:1249–

1256, 2009.

[148] Z. Chajecki. Identical particle correlations in star. Nucl. Phys., A774:599–602, 2006.

[149] Adam Kisiel. Non-identical particle correlations in 130 AGeV and 200 AGeV collisions

at star. J. Phys., G30:S1059–S1064, 2004.

[150] J. Adams et al. Pion-kaon correlations in Au + Au collisions at
√
sNN = 130 GeV.

Phys. Rev. Lett., 91:262302, 2003.

[151] E. D. Courant and H. S. Snyder. Theory of the alternating-gradient synchrotron.

Annals of Physics, 3:1–48, January 1958.



BIBLIOGRAPHY 145

[152] Gordon Baym. RHIC: From dreams to beams in two decades. Nucl. Phys., A698:XXIII–

XXXII, 2002.

[153] T. W. Ludlam. RHIC AND QUARK MATTER: A PROPOSED HEAVY ION COL-

LIDER AT BROOKHAVEN NATIONAL LABORATORY. BNL-35237,Published in

Helsinki Quark Matter 1984:0240.

[154] Thomas W. Ludlam. RELATIVISTIC HEAVY IONS AT BROOKHAVEN: HIGH-

ENERGY NUCLEAR BEAMS IN THE AGS AND RHIC. Nucl. Phys., A447:349c–

369c, 1986. BNL-37083.

[155] NEC. Peletron Charging System. http://www.pelletron.com/charging.htm.

[156] List of most common species for BNL Tandems. http://tvdg10.phy.bnl.gov/species.html.

[157] J. Alessi et al. Upgrade and Operation of the BNL Tandems for RHIC Injection.

Presented at IEEE Particle Accelerator Conference (PAC2001), Chicago, Illinois, 18-

22 Jun 2001.

[158] T. Satogata et al. Commissioning of RHIC Deuteron Gold Collisions. Particle Accel-

erator Conference (PAC 03) 12-16 May 2003, Portland, Oregon.

[159] L. Ahrens et al. The RHIC Injector Accelerator Configurations, and Performance for

the RHIC 2003 Au d Physics Run. Particle Accelerator Conference (PAC 03) 12-16

May 2003, Portland, Oregon.

[160] C. J. Gardner et al. Setup and Performance of RHIC for the 2008 Run with Deuteron

and Gold Collisions. EPAC’08, 11th European Particle Accelerator Conference, 23- 27

June 2008, Genoa, Italy.

[161] L. Ahrens et al. Setup and performance of the RHIC injector accelerators for the

2007 run with gold ions. Prepared for Particle Accelerator Conference (PAC 07),

Albuquerque, New Mexico, 25-29 Jun 2007.

[162] H.E. Wegner P. Thieberger, M. McKeown. IEEE Trans. Nucl. Sci. NS-30 (4) (1983)

2746.

[163] P. Thieberger. POSSIBLE USE OF SYNCHROTRONS AS POSTACCELERATION

BOOSTERS FOR TANDEMS. Nucl. Instrum. Meth., A220:209–210, 1984.

[164] H. Hahn et al. The RHIC design overview. Nucl. Instrum. Meth., A499:245–263, 2003.

[165] RHIC Design Manual. http://www.agsrhichome.bnl.gov/NT-

share/rhicdm/00 toc1i.htm.



146 BIBLIOGRAPHY

[166] J. W. Harris. The STAR experiment at the relativistic heavy ion collider. Nucl. Phys.,

A566:277c–285c, 1994.

[167] K. H. Ackermann et al. Star detector overview. Nucl. Instrum. Meth., A499:624–632,

2003.

[168] M. E. Beddo et al. STAR: Conceptual design report for the Solenoidal Tracker at

RHIC. BNL-PUB-5347.

[169] F. Bergsma et al. The STAR detector magnet subsystem. Nucl. Instrum. Meth.,

A499:633–639, 2003.

[170] S. U. Pandey et al. The silicon drift vertex detector for the STAR experiment at RHIC.

Nucl. Instrum. Meth., A477:88–92, 2002.

[171] L. Arnold et al. The STAR silicon strip detector (SSD). Nucl. Instrum. Meth.,

A499:652–658, 2003.

[172] K. H. Ackermann et al. The STAR time projection chamber. Nucl. Phys., A661:681–

685, 1999.

[173] M. Anderson et al. The STAR time projection chamber: A unique tool for studying

high multiplicity events at RHIC. Nucl. Instrum. Meth., A499:659–678, 2003.

[174] K. H. Ackermann et al. The forward time projection chamber (FTPC) in STAR. Nucl.

Instrum. Meth., A499:713–719, 2003.

[175] M. Shao et al. Extensive particle identification with TPC and TOF at the STAR

experiment. Nucl. Instrum. Meth., A558:419–429, 2006.

[176] F. S. Bieser et al. The STAR trigger. Nucl. Instrum. Meth., A499:766–777, 2003.

[177] C. Adler et al. The RHIC zero-degree calorimeters. Nucl. Instrum. Meth., A461:337–

340, 2001.

[178] M. Anderson et al. A readout system for the STAR time projection chamber. Nucl.

Instrum. Meth., A499:679–691, 2003.

[179] R. Bellwied et al. The STAR silicon vertex tracker: A large area silicon drift detector.

Nucl. Instrum. Meth., A499:640–651, 2003.

[180] S. U. Pandey et al. The silicon drift vertex detector for the STAR experiment at RHIC.

Nucl. Instrum. Meth., A477:88–92, 2002.



BIBLIOGRAPHY 147

[181] D. Lynn et al. The STAR silicon vertex tracker: A large area silicon drift detector.

Nucl. Instrum. Meth., A447:264–273, 2000.

[182] Stephen Baumgart. A Study of Open Charm Production in Heavy Ion Collisions of

Center-of-Mass Energy 200 GeV per Nucleon. PhD thesis, Yale University, 2009.

[183] E. Gatti and P. Rehak. Semiconductor drift chamber - an application of a novel charge

transport scheme. Nucl. Instrum. Meth., A225:608–614, 1984.

[184] David M. Read. The Silicon drift detector and its use in a vertex tracker. UMI-96-

33268.

[185] E. Gatti, A. Longoni, M. Sampietro, and P. Rehak. DYNAMICS OF ELECTRONS

IN DRIFT DETECTORS. Nucl. Instrum. Meth., A253:393–399, 1987.

[186] V. Rykov. private comunications.

[187] Selemon Bekele. Neutral Kaon Correlations in Au-Au Collisions at Center of Mass

Energy of 200 GeV per Nucleon Pair. PhD thesis, The Ohio State University, 2004.

[188] R. Bellwied et al. Studies of dynamics of electron clouds in STAR silicon drift detectors.

Nucl. Instrum. Meth., A439:507–512, 2000.

[189] V. E. Barnes et al. OBSERVATION OF A HYPERON WITH STRANGENESS -3.

Phys. Rev. Lett., 12:204–206, 1964.

[190] Javier Castillo. Production de particules doublement étranges dans les collisions d’ions
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l’expérience STAR. PhD thesis, Université de Nantes, 2005.
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