

Dielectron and Direct Virtual Photon Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Chi Yang^{1,2} for the STAR Collaboration

Outline:

- Motivation
- STAR detector
- Dielectron production
- Direct virtual photon production
- Summary and outlook

- 1. University of Science and Technology of China
- 2. Brookhaven National Laboratory

Motivation

Direct photon and dielectron

----- ideal electroweak probes

- ✓ suffer no strong interaction, traverse the medium with minimum interaction
- ✓ produced throughout all stages of the evolution of the system
 Direct photon:
- \checkmark high p_T photons (>5GeV/c) : initial hard scattering
- ✓ low p_T photons (1-5GeV/c) : access QGP production

Similar process for virtual photon production, which could convert into e⁺e⁻ pair.

$$\gamma^* \rightarrow e^+ e^-$$

2014/5/19

Motivation

Dielectron:

- higher invariant mass => earlier production
- Low Mass Region
 - \checkmark In-medium modification of vector mesons

Intermediate Mass Region

- ✓ QGP thermal radiation
- ✓ Semi-leptonic decay of correlated charm: charm modification in Au+Au

High Mass Region

- ✓ Heavy quarkonia
- ✓ Drell-Yan process

STAR detectors

Key detectors used in the analysis:

Time Projection Chamber:

- > |η| < 1 0<Φ<2π
- Main tracking detector: track, momenta, ionization energy loss (dE/dx)

Time Of Flight:

- ▶ |η| < 0.9 0<Φ<2π</p>
- Intrinsic timing resolution ~ 75 ps
- Time-of-flight measurement

Barrel Electro-Magnetic Calorimeter:

- > |η| < 1 0<Φ<2π
- Trigger on and measure high-p_T processes

Туре	Year	Central	Min.Bias	EMC trigger (energy threshold 4.3GeV)
Au+Au 200GeV	2010	220M	240M	
	2011		490M	39M
p+p 200GeV	2012		375M	

2014/5/19

Electron identification

Time-Of-Flight provides clean electron identification from low to intermediate p_T which enables the dielectron measurements.

Chi Yang, QUARK MATTER 2014

5

Invariant mass distribution and cocktail input

p + *p* S/B : STAR Collaboration, Phys.Rev. C 86, 024906 (2012).

 $M_{ee} < 1 \text{ GeV/c}^2$ Like sign background $M_{ee} >= 1 \text{ GeV/c}^2$ Mixed event background

Input p_T spectra

PHENIX Collaboration, Phys. Rev. C 81, 034911 (2010) STAR Collaboration, Phys. Rev. Lett. 92, 112301 (2004) STAR Collaboration, Phys. Lett. B 612, 181 (2005). STAR Collaboration, Phys. Rev. Lett. 97, 152301 (2006) Z. Tang et al. Phys. Rev. C 79, 051901 (2009)

TAR

p+p 200GeV results from Run12

Cocktail is taken from *[Phys.Rev.C. 86, 24906 (2012)]* with charm cross section changed from 0.96 to 0.80mb (±0.36mb) *[Phys.Rev.D. 86, 72013 (2012)]* (STAR newest measurement) *Run9 p+p: [Phys.Rev.C. 86, 24906 (2012)]*

Within uncertainty, the cocktail simulation reproduces the data very well.

With a full TOF coverage and more data taken, Run-12 results have greatly improved statistics ~ 7 times more than Run9.

2014/5/19

Au+Au 200GeV results from Run10

Submitted to PRL arXiv:1312.7397

Models show good agreement with data within uncertainty.

Low-mass excess

1) invariant-mass dependence :

Broadened ρ model calculations can explain STAR data within uncertainties. Our measurements disfavor a pure vacuum ρ model with a $\chi^2/NDF = 25/8$ in 0.3~1 GeV/c².

(A) ρ-like region : 0.3~0.76 GeV/c²
(B) ω-like region: 0.76~0.80 GeV/c²
(C) φ-like region: 0.98~1.05 GeV/c²

ω-like and φ-like region (B), (C):
 --- Yield shows N_{part} scaling.
 ρ-like region (A):
 --- Significant excess is observed.

2014/5/19

e⁺e⁻ pair from internal conversion

• Relation between real photon yield and the associated e⁺e⁻ pairs:

Low mass dielectron continuum

• 0-5 GeV/c Run10+Run11 MB data

• 5-10 GeV/c Run11 EMC triggered data

The statistical and systematic uncertainties are shown by the bars and bands, respectively.

Fraction of direct virtual photon

Direct virtual photon invariant yield

no η measurement in $p_T < 2$ GeV/c Most uncertainty comes from the difference between TBW model prediction and m_T scaling

Direct virtual photon invariant yield

no η measurement in $p_T < 2$ GeV/c Most uncertainty comes from the difference between TBW model prediction and m_T scaling

Low p_T range

Rapp's model prediction¹ including QGP, p, meson gas, and primordial production contributions is consistent with the invariant yield at $1 < p_T < 5$ GeV/c within our uncertainty.

1: from private communication with Ralf Rapp for Min.Bias. 0-20%: initial temperature ~320MeV at 0.36fm/c, fireball life time ~10fm/c. [Van Hees, Gale, and Rapp, Phys. Rev. C 84, 054906] Chi Yang, QUARK MATTER 2014

2014/5/19

Summary

- Dielectron production: (Yi Guo's poster 548 @ Board #: G-13)
 - Measured dielectron production in Au+Au collisions at STAR at $\sqrt{s_{NN}}$ =200GeV.
 - An enhancement is observed with a data/cocktail ratio 1.77±0.49 at ρ-like region in Min.Bias.
 - Within uncertainties, broadening of ρ model calculations can explain the enhancement.

• Direct virtual photon production:

- Presented the direct virtual photon measurement (1-10 GeV/c) in Au+Au collisions at STAR at $\sqrt{s_{NN}}$ =200GeV.
- An enhancement compared to PHENIX p+p results is observed for 1-5 GeV/c and the invariant yield is consistent with model prediction.
- For p_T range 5-10 GeV/c, the invariant yield follows a T_{AA} scaled p+p results.

Outlook:

- To measure eta meson in 1-2 GeV/c.
- Get the direct virtual photon reference measurements in p+p from STAR Run12 results.
- Improve the charm contributions.

Backup

STAR

Background

Like sign background:

- can reconstruct both the combinatorial and correlated background.
- low statistics
- need to correct acceptance difference between unlike sign and like sign ee pair

$$B_{likesign} = 2\sqrt{N_{++}N_{--}} \frac{B_{+-}}{2\sqrt{B_{++}B_{--}}}$$

for EMC triggered events in $p_T > 5GeV/c \ B_{likesign} = (N_{++}+N_{--})\frac{B_{+-}}{2\sqrt{B_{++}B_{--}}}$

N: same event B: mixed event

Mixed event background:

- High statistics
- Do not need to correct acceptance
- Can't reconstruct correlated background
- normalized to Like Sign in mass region [1,2] GeV/c²

Centrality and p_T dependence (Run10)

Two models show good agreement with data within uncertainty.

$\Phi_{\rm V}$ cut for photon conversion rejection

 Φ_V definition:

$$\hat{u} = rac{ec{p_+} + ec{p_-}}{ec{p_+} + ec{p_-}}, \hat{v} = ec{p_+} imes ec{p_-}$$
 $\hat{w} = \hat{u} imes \hat{v}, \hat{w}_c = \hat{u} imes \hat{z}$
 $\cos \phi_{\mathrm{V}} = \hat{w} \cdot \hat{w}_c$

- GEANT simulation :
- Red line is the cut
- ~99% conversion electrons are rejected

Compare to PHENIX results

- 1. To measure eta meson in 1-2 GeV/c ($\eta \rightarrow \gamma + \gamma$).
- 2. Get the p+p reference from STAR Run12 data.
- 3. To obtain the inverse slope parameter.

Outlook- STAR Upgrade

- Fully installed Muon Telescope Detector in Run14 will significantly enhance di-lepton related analysis.
 - di-µ will provide another way to study direct virtual photon.
 - e-µ correlation distinguish heavy flavor contribution from initial pair production.

Heavy Flavor Tracker: fully installed.

Topologically reconstructs D mesons from hadronic decays and identifies electrons from charm decays