The 8th International Conference on Chirality, Vorticity and Magnetic Field in Quantum Matter

Measurement of global and local spin polarization of Λ and $\overline{\Lambda}$

in Au+Au collisions from the RHIC Beam Energy Scan-II

Tong Fu (付曈), for the STAR Collaboration Shandong University

Supported in part by

Office of Science

Global polarization

□Local polarization

Shear Induced Polarization (SIP)

Baryonic Spin Hall Effect (SHE)

□ Summary

Introduction to Global Polarization

Z.-T. Liang and X.-N. Wang, PRL 94, 102301 (2005)
 Non-central HICs have large initial angular momentum and magnetic field_____

Polarize quarks due to "spin-orbit" interaction

Polarization of the final-state hadrons

Provide the unique opportunity to probe the spin degrees of freedom of the QGP

- > α_H is the hyperon decay parameter, $\alpha_H = 0.732 \pm 0.014$
- $\rightarrow \phi^*$ is the azimuthal angle of the daughter proton in Λ rest frame
- > A_0 is an acceptance correction factor, $A_0 = \langle \sin \theta_p^* \rangle$

■ Positive signal of global polarization observed in Λ at lower collision energies (7.7–39 GeV) from BES-I by STAR in 2017 $\omega \approx K_B T \left(P_{\Lambda} + P_{\overline{\Lambda}} \right) \sim 10^{21} s^{-1}$

Strongest vorticity observed in nature

- Higher statistics data at 200 GeV confirmed positive signal and energy dependence of global polarization by STAR in 2018
- High-energy region(ALICE, 2.76 TeV and 5.02 TeV), low-energy region(HADES, 2.4 GeV and 2.55 GeV)
- Provide the late-stage magnetic field affect global polarization
 Provide the late-stage magnetic field affect global polarization

$$B|pprox rac{T_s|P_\Lambda-P_{ar\Lambda}|}{2\,|\mu_\Lambda|}$$

The late-stage magnetic field may be extracted through the splitting of P_{Λ} and $P_{\overline{\Lambda}}$

The STAR detector and BES-II data sets

• Time Of Flight

- Particle identification
- Time Projection Chamber
 - The iTPC upgrade extended the pseudorapidity

coverage from $|\eta| < 1$ to $|\eta| < 1.5$

- Particle reconstruction
- □ Second-order event plane reconstruction
- Event Plane Detector
 - Improved the event plane reconstruction resolution by over 50%
 - First-order event plane reconstruction
- The BES-II by STAR collected an order of magnitude more data compared to BES-I
- Collected data at two additional energy points compared to BES-I (9.2, 17.3 GeV)

Result of Global Polarization from BES-II

Clear centrality dependence of Λ and $\overline{\Lambda}$

Trend consistent with expectation from vorticity

STAR

5

0

 $P_{H}[\%]$

 10^{2} 10 Energy [GeV]

□ The results from BES-II have much higher precision compared to BES-I, and include two new energy (9.2, 17.3 GeV) □ The global polarization decreases with increasing collision energy

Splitting Between Λ and $\overline{\Lambda}$ Global Polarization

□ The results are consistent with the measurements from BES-I

- No splitting between Λ and $\overline{\Lambda}$ global polarization within uncertainties
- □ Upper limit on late stage magnetic field
 - 95% confidence level
 - $B < 9.4 \times 10^{12} T$ at 19.6 GeV
 - $B < 1.4 \times 10^{13} T$ at 27 GeV

STAR, Phys. Rev. C 108, 014910 (2023)

Introduction to Polarization along the Beam Direction

■ Anisotropic expansion of QGP leads to vorticity and particle polarization

$$P_z = rac{\langle \cos heta_p^*
angle}{lpha_H \langle \cos^2 heta_p^*
angle} \quad \langle P_z \sin(n\phi - n \Psi_n)
angle = rac{\langle P_z \sin(n\phi - n \Psi_n^{
m obs})
angle}{\operatorname{Res}(\Psi_n)}$$

Measurements of polarization along the beam direction are important for understanding vorticity dynamics and its relation to polarization.

Introduction to Shear Induced Polarization (SIP)

■ Predicted A spin polarization along the beam direction differs qualitatively from experimental observations.

□ Shear Induced Polarization (SIP) may plays an essential role

$$P_{2,y} = rac{8 \left\langle \sin\left(\Psi_1 - \phi_p^*\right) \cos\left[2(\Delta \phi)\right] \right\rangle}{\pi lpha_H}$$
, $\Delta \phi = \phi_\Lambda - \Psi_2$

B. Fu, S. Liu et al. PRL 127, 142301 (2021)

Fu Tong

Result of Local Polarization from BES-II

STAR observed clear signal of polarization along the beam direction in AuAu and isobar collision

□ Measurements extended to BES energies

STAR

Result of Local Polarization from BES-II

■ Hints of sign change of $P_{2,z}$ at 7.7 GeV, baryon diffusion with Λ -scenario predicts sign change opposite to data

■ $P_{2,y}$ of Λ increase with decreasing energy and current models cannot describe the results

Introduction to Baryonic Spin Hall Effect (SHE)

 $\square \text{ Hall effect: } P \propto \boldsymbol{p} \times \boldsymbol{E}$

- Spin polarization by the SHE depends on momentum: $P \propto \boldsymbol{p} \times (q_B \nabla \mu_B) \longrightarrow \text{driven by } \nabla \mu_B$
- As the energy decreases, the system generates a stronger baryon chemical potential gradient
- $\square \text{ Sign of } P_{2,z}^{net} \text{ is opposite with and without SHE at BES energies}$ $P_{2,z} = \frac{\langle \cos\theta_p^* \sin[2(\phi_{\Lambda} - \Psi_2)] \rangle}{\alpha_H \langle (\cos\theta_p^*)^2 \rangle} \qquad P_{2,y} = \frac{8 \langle \sin(\Psi_1 - \phi_p^*) \cos[2(\phi_{\Lambda} - \Psi_2)] \rangle}{\pi \alpha_H}$

Shuai Y. F. Liu, Yi Yin, Phys.Rev.D 104 , 054043 (2021) B. Fu et al., arXiv:2201.12970v1

Result of Baryonic Spin Hall Effect

 \square Obtained the net polarization $P_{2,y}^{net}$ and $P_{2,z}^{net}$

□ No significant energy dependence are observed within uncertainties

□ Hints of sign change with decreasing energy

- ✓ The global polarization of Λ and $\overline{\Lambda}$ in Au+Au collisions at 7.7, 9.2, 11.5, 14.6, 17.3 GeV measured by STAR BES-II
 - Clear energy dependence
 - No splitting between Λ and $\overline{\Lambda}$
- The polarization along the beam direction of Λ and Λ in Au+Au collisions at 7.7, 9.2, 11.5, 14.6,
 19.6, 27 GeV measured by STAR BES-II
 - Hints of sign change of $P_{2,z}$ at 7.7 GeV, baryon diffusion with Λ -scenario predicts sign change opposite to data
 - $P_{2,y}$ of Λ increase with decrease in energy
 - First study of baryonic Spin Hall Effect

Backup

Result of Polarization along the Beam Direction

Model: X. Wu et al., PRC 105 (2022) 064909

- $0.098 \pm 0.014(stat.)^{+0.019}_{+0.018}(syst.)$ in Au+Au 200 GeV STAR, PRL 123, 132301 (2019)
- $0.082 \pm 0.011(stat.) \pm 0.014(syst.)$ in Pb+Pb 5.02 TeV ALICE, PRL128, 172005 (2022)