Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions 2018

STAR measurements in search of the CME and the CMW -- a biased selection of STAR results

Gang Wang (for STAR collaboration) UCLA

For the CME,

I will discuss different types of background in γ ; I will not cover

- alternative correlator (see Roy Lacey's talk)
- γ as a function of invariant mass
- decomposition of γ vs $\Delta \eta$

For the CMW,

I will discuss alternative interpretations, including

- hydro+isospin
- local charge conservation

Chiral Magnetic Effect: magnetic field + chirality = current

spin alignment in B-field: opposite directions for opposite charges

handedness: momentum and spin, aligned or anti-aligned

courtesy of P.Sorensen

negative goes up positive goes down positive goes up negative goes down

An excess of right or left handed quarks lead to a current flow along the magnetic field.

 $ec{J}=rac{e^2}{2\pi^2}\;\mu_5\;ec{B}$

CME observable: γ **correlator**

 $\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin\left(\phi^{\pm} - \Psi_{RP}\right)$ S. Voloshin, PRC 70 (2004) 057901 $\gamma = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}) \right\rangle$ Reaction plane. $= \left\langle \left\langle \tilde{v}_{1,\alpha} \tilde{v}_{1,\beta} \right\rangle + B_{in} - \left\langle \left\langle \tilde{a}_{\alpha} \tilde{a}_{\beta} \right\rangle + B_{out} \right\rangle$ (Ψ_R) background effects: P-even quantity: largely cancel out still sensitive to X (defines $\Psi_{\rm p}$) directed flow: expected to be charge separation the same for SS and OS $\frac{B_{in} - B_{out}}{B_{in} + B_{out}} = V_{2,cl} \frac{\left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{cl}) \right\rangle}{\left\langle \cos(\phi_{\alpha} - \phi_{\beta}) \right\rangle}$ v₂ of clusters/resonances, not ▶ final particles, containing both flow and nonflow. 4

Charge separation signal

Nonflow-related background

Anisotropy-related background

A specific configuration as shown below could solely come from statistical fluctuations.

Apparent anisotropy: explicit v₂ (of final-state particles). even w/o visual charge separation

controllable with measured v_2

Hidden anisotropy: implicit v_2 (of resonance parents). real charge separation, but not CME Ψ_{RP} Ψ_{RP} $v_2 = 0$ $v_2 = 0$ $\gamma_{SS} = -1$ $\gamma_{SS} = 0$ $\gamma_{\rm OS} = 1/2$ $\gamma_{OS} = 0$

hard to control directly

v2^{explicit}-related background

$$\gamma_{1,n-1,n} = \left\langle \cos[\varphi_{\alpha} + (n-1)\varphi_{\beta} - n\Psi_{\text{EP}}] \right\rangle / \operatorname{res}_{\text{EP}} \qquad \delta = \left\langle \cos(\phi_{\alpha} - \phi_{\beta}) \right\rangle$$
$$= \kappa_{1,n-1,n} \cdot v_{n,\beta} \cdot \delta \qquad \kappa_{1,n-1,n} \text{ is just } \gamma_{1,n-1,n} \text{ normalized by } v_n \text{ and } \delta.$$

 κ_{112} and κ_{123} are consistent with each other (except in the most collisions), especially after removing very-short-range correlations.

8

Event-shape engineering

- divide each event into 3 sub-events.
- q, flow vector of particles of interest, provides a handle on the event shape.
- data point in each q bin is averaged over that specific event sample.
- AMPT shows that $v_2^{explicit}$ disappears when projecting q to 0, which is expected by construction.

Fufang Wen, Jacob Bryon, Liwen Wen, Gang Wang, Chinese Phys. C 42(1) (2018) 014001

Event-shape engineering

- q, flow vector of particles of interest, provides a handle on the event shape.
- AMPT shows that γ_{OS} and γ_{SS} approach each other at small q.
- The background in $\Delta \gamma$ disappears when projecting q to 0.

consistent with zero: $(-4.5 \pm 6.7) \times 10^{-4}$ for $N_{\text{part}} \Delta \gamma^{\text{A}}$ and $(-3.3 \pm 10.6) \times 10^{-4}$ for $N_{\text{part}} \Delta \gamma^{\text{observe}} / R^{\text{B1(B2)}}$.

Fufang Wen, Jacob Bryon, Liwen Wen, Gang Wang, Chinese Phys. C 42(1) (2018) 014001

This approach only takes care of the background due to the explicit v₂.

| ()

Artificial effect

Fufang Wen, Jacob Bryon, Liwen Wen, Gang Wang, Chinese Phys. C 42(1) (2018) 014001

 $\Delta \gamma|_{q=0}$ will not artificially diminish the CME signal, but will exaggerate it by a factor of $2v_2$, a roughly 10% effect.

v₂: 200 GeV Au+Au

- The 2nd-order EP resolution depends on q.
- $v_2^{explicit}$ goes to zero at zero q (also true for separate charges), which is expected by construction.

12

γ₁₁₂: 200 GeV Au+Au

- OS and SS approach each other at small q.
- When q² is extrapolated to 0, there is a finite intercept: (7.51 ± 0.75)*10⁻³
 - A 10σ effect for 20-60% events.
- IF this is due to CME, then a₁ is on ~ 1% level.
- The intercept may come from some implicit-v₂ backgrounds. Need to apply the method to $\gamma_{123} = \langle \cos(\varphi_{\alpha} + 2\varphi_{\beta} - 3\psi_{RP}) \rangle$

Centrality dependence

v₃: 200 GeV Au+Au

15

γ₁₂₃: 200 GeV Au+Au

- γ₁₂₃ can be studied via the 3rdorder flow vector, q₃.
- When q₃² is extrapolated to 0, there is a finite intercept: (8.32 ± 1.92)*10⁻³ A 4σ effect for 20-60% events.
- the intercepts for γ_{112} and γ_{123} are consistent with each other. $(7.51 \pm 0.75)*10^{-3}$ for γ_{112}
- Should they scale with v₂ and v₃, instead of being the same? (if they are due to implicit v₂ or v₃)

Centrality dependence

- The raw signals are different between γ_{112} and $\gamma_{123.}$ (a factor of 3)
- The ESE signals are, however, similar for γ_{112} and γ_{123} .
- Origin of these finite intercepts: residue nonflow? implicit v₂? CME?

γ₁₁₂ and **γ**₁₂₃: 39 GeV Au+Au

- γ_{112} : $(1.319 \pm 0.223)*10^{-2}$, 6σ effect
- γ_{123} : (-1.316 ± 0.756)*10⁻², consistent with zero
- This year, 27 GeV data will provide a chance to confirm this.
- The newly installed EPD will help further suppress nonflow.

Summary on CME

- Nonflow backgrounds are severe in small systems
 - \bullet suppressed with η gap between EP and particles of interest
- Apparent-anisotropy background seems to be the major contribution
 - κ_{112} and κ_{123} are close to each other
 - ESE shows small but finite intercepts for both γ_{112} and γ_{123}
 - \bullet what if CME and v_2 are strongly correlated as functions of centrality
- Hidden-anisotropy background may be small
 - but hard to handle directly
- Isobaric collisions will clarify whether B field plays a role
 - will do blinding analysis
- High-statistics BES data and the EPD will further help

Observable

and $\pi^+ v_2$ should have a negative slope with the same magnitude.

Different collision systems

The TPC event plane was used in these analyses.

Alternative interpretation: hydro+isospin

Y. Hatta et al. NPA 947 (2016) 155

23

 $v_2(K^+) > v_2(K^-)$

 $v_2(p) > v_2(p-bar)$

kaon Δv_2 slope

Hydrodynamics study (no CMW): kaon slope should be opposite to π slope with larger magnitude, since $v_2(\pi^+) < v_2(\pi^-)$ $v_2(\mathbf{K}^+) > v_2(\mathbf{K}^-)$

STAR measurements show that kaon slope parameters behave similarly to those of π , not opposite: the isospin effect is not the dominant contribution to the pion or kaon slopes.

proton Δv_2 slope

Alternative interpretation: LCC

Clusters located close to acceptance boundary produce one pion outside boundary. v_2 decreases with $|\eta|$.

Clusters with low p_T have particles more separated in η than high- p_T clusters. v_2 increases with p_T .

A. Bzdak and P. Bozek, Phys. Lett. B 726 (2013) 239

 η dependence of ν_2 is weaker than what this paper used; mean p_T in data is constant vs A_{ch} (no 2nd effect); the LCC effect is estimated to be 10 times smaller than data.

Δv_3 slope

Local charge conservation may introduce A_{ch} dependence of $\Delta v_2(\pi)$. Then one should see **Norm.** $\Delta v_3 \sim Norm.$ Δv_2 (Bzak & Bozek PLB 726(2013)239). **STAR measurement:** Norm. $\Delta v_3 < Norm.$ Δv_2 at low p_T. Closer at high p_T. LCC mechanism alone cannot explain data.

Summary on CMW

- No signals in p+Au, d+Au or peripheral Au+Au/U+U
- Signals in U+U larger than Au+Au
 - magnetic field difference?
- Hydro+isospin interpretation
 - not significant in pion or kaon slopes
 - may contribute to proton slopes
- LCC interpretation alone can not explain
 - Norm. $\Delta v_3 < Norm. \Delta v_2$
- There is room for CMW.

Backup slides

γ₁₁₂: 200 GeV Au+Au

After randomly rejecting half of the particles, the q-dependence becomes stronger, but the intercept remains the same.

γ₁₁₂: 200 GeV Au+Au

When introducing η gap of 0.1, the q-dependence and the intercept are stable. Forcing the fit to (0,0) gives ~6 times larger χ^2 . **γ**₁₂₃: 200 GeV Au+Au

When introducing η gap of 0.1, the q-dependence and the intercept are stable.

Centrality dependence

15