

Coherent e⁺e⁻ production at very low transverse momentum at STAR

Chi Yang for the STAR collaboration

Shandong University

17th International Conference on Strangeness in Quark Matter

- ✓ Electromagnetic probes at STAR
- ✓ Very low $p_T e^+e^-$ production
- \checkmark e⁺e⁻ production and iTPC upgrade
- ✓ Summary and outlook

Direct photon and e⁺e⁻ pairs —— ideal electromagnetic probes

- ✓ suffer no strong interaction, traverse the medium with minimum interaction
- \checkmark produced throughout all stages of the evolution of the system

Direct photon:

- Higher p_T -> Earlier produced
- ✓ high p_T : initial hard scattering
- $\checkmark~$ low p_T : access QGP production

e⁺e⁻ pairs:

Higher M_{ee} -> Earlier produced

- ✓ Low Mass Region (<1.1 GeV/c²): vector meson in-medium modification
- ✓ Intermediate Mass Region (1.1-3 GeV/c²): thermal probe of QGP

STAR detectors

2017/7/10

Electromagnetic probes at STAR

Direct photon invariant yield 10^{2} 10 Au+Au 200 GeV d²N/(2πp_πdp_πdy) ((GeV/c)^{-2,} - 60-80% ×10⁻² **10**⁻ 10⁻⁸ — T_{AA} scaled p+p 10 10^{-10} --- the case with m_T scaling 10⁻¹¹ 10^{-12} 2 3 5 7 8 9 6 10 p_T (GeV/c)

STAR, PLB 770 (2017) 451-458

In ρ -like region, the enhancement factor is about 1.77

- ✓ No pair p_T selection
- $\checkmark~$ No ρ contribution in hadronic cocktail simulation

Compared to pp reference, thermal photons can be observed

Green bends represent the systematic uncertainties for hadronic cocktail and pp reference, respectively.

Electromagnetic probes at STAR

In ρ -like region, the enhancement factor is about 1.77

✓ No pair p_T selection

 \checkmark No ρ contribution in hadronic cocktail simulation

Model predictions which include the contributions from thermal radiation and initial hard-processes are consistent with our yield within uncertainties except some bins in 60-80%

Photoproduction in UPC

Photoproduction in Ultra Peripheral Collisions (UPC)

Coherent:

- $\checkmark\,$ Emitted photon/pomeron interacts with the nucleus as a whole
- ✓ Strong coupling results in large cross sections
- ✓ Photon wavelength $\lambda = h/p > R_A$
- ✓ $p_T < h/R_A \sim 30$ MeV/c for heavy ions

Coherent J/ ψ production in non-UPC

Recent results in ALICE and STAR

ALICE, PRL116(2016)222301

W. Zha, JPCS 779 (2017) no.1, 012039

The solid curves are the fits from hadronic distribution region.

Both STAR and ALICE experiments observe J/ ψ excess in dilepton channel in non-UPC collisions —— Photon-nucleus interactions

Can this excess be observed for e⁺e⁻ itself over the whole M_{ee} range?

2017/7/10

✓ Clear excess in non-central Au+Au and U+U collisions

✓ Excess observed over the whole mass range (<4 GeV/c²)

Can it be explained by coherent photoproduction?

dN/dp_T versus p_T

- ✓ Excess only observed at very low p_T
- ✓ Meets p_T requirement for coherent photoproduction
- \checkmark The shape is similar to that in the UPC case

Challenge current understanding for coherent photoproduction

2017/7/10

d²N/dtdy

d²N/dtdy

The slope is similar to that in UPC coherent production.

2017/7/10

d²N/dtdy

 \checkmark Consistent with coherent production scenario

Large slope parameter => Large interaction size

Slope in U+U is sharper than that in Au +Au

2017/7/10

Do these e⁺e⁻ pairs come from coherent photoproduction?

- The behaviors of measured observables are similar with those in UPC
- ✓ Need to measure the relation with EM field to confirm coherent photoproduction scenario
- Photon-photon interaction and photon-nucleon interaction contributions need to be distinguished
- ✓ No clear ρ signal, melted/broadened by medium or much smaller compared to photon-photon process? Or both? May be novel probes to the medium

Can coherent photoproduction and hadron-hadron interaction be factorized?

Call for theoretical calculations!

Physics opportunities in isobaric collisions

- STAR plans to take 44⁹⁶Ru+44⁹⁶Ru and 40⁹⁶Zr+40⁹⁶Zr 200GeV data in 2018, 1.2 billion for each dataset
- Study the impact from systems with different EM fields
- Study the Z dependence -> $af(Z^2) + bf(Z^4)$?

W. -T. Deng and X. -G. Huang, PRC 85 (2012) 044907

e⁺e⁻ measurement with inner TPC upgrade

- ✓ Systematically study continuum from 7.7-19.6 GeV
- Distinguish model with different rho-meson broadening

See Flemming's talk on Jun.14th at 11:55 am

- ✓ Study effect of total baryon density on LMR excess
- \checkmark ~10 times more statistics, ~1/2 systematic uncertainties (improved dE/dx)

 ✓ Observed significant excesses for e⁺e⁻ at very low p_T in non-central heavy-ion collisions at top RHIC energies

- ✓ The production features seems to be consistent with coherent photoproduction scenario. Theoretical input is needed!
- ✓ Isobaric collisions proposed by STAR in 2018 will help to study this very low p_T production mechanism further
- ✓ Isobaric collisions will help to study the EM field impact on e⁺e⁻ production

backup

inner TPC upgrade

iTPC upgrade

Continuous pad rows Replace all inner TPC sectors

|η|<1 -> |η|<1.5

р_т >60 MeV/c

Better dE/dx resolution Better momentum resolution

Fully operational in 2019

Replace all 24 inner sectors, with:

- Increase readout pad rows from 13 to 40 -- 20% coverage -> ~100% coverage
- Renew all three wire frames
 - -- Replace ageing wires, MWPC building in Shandong University
- New electronics for inner sectors

-- Double # of readout channels per FEE, use ALICE SAMPA chip

- New designed insertion tools
- New designed strongback

MPA chip

STAR Note 619

2017/7/10