

XLVIII International Symposium on Multiparticle Dynamics

3 to 7 September 2018 Nanyang Executive Centre, NTU

Collectivity in Heavy Ion Collisions at RHIC-STAR

Shusu Shi 施梳苏 for the STAR Collaboration

Central China Normal University 华中师范大学

XLVIII International Symposium on Multiparticle Dynamics (ISMD 2018)

> Introduction

- > The STAR Detector
- Results and Discussions
- > Summary and Outlook

Anisotropic Flow

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right]$$

 v_1 : directed flow; v_2 : elliptic flow; v_3 : triangular flow

The STAR Detector

TAR

Charm Quark Collectivity

- Large v₂ values, comparable to light hadrons, is seen for D⁰ mesons
- Clear mass ordering seen below 2 GeV/c
- v₂ values of D⁰ scaled with number of constituent quarks (NCQ) follow the same trend as light hadrons
- Suggest charm quarks flow with the QGP

STAR: Phys. Rev. Lett.118, 212301 (2017)

Beam Energy Scan I

ture	Early Universe The Phases of QCD	√S _{NN} (GeV)	Events (10 ⁶)	Year
npera	RHIC Experiments	200	350	2010
~170 MeV		62.4	67	2010
	Crossover Critical Point Hadron Gas Nuclear	54.4	1000	2017
		39	39	2010
		27	70	2011
		19.6	36	2011
		14.5	20	2014
0 MeV-	Vacuum Matter Neutron Stars	11.5	12	2010
	Baryon Chemical Potential	7.7	4	2010

Explore the QCD phase structure!

ISMD 2018, 3-7 Sep. 2018, Singapore

Directed Flow v₁: Softest Point

dv₁/dy: the slope of directed flow versus rapidity near mid-rapidity

Hydrodynamic calculation with the 1st-order phase transition motivates the study

Net-proton slope changes sign twice

EOS softest point?

UrQMD fails to reproduce the data

The slope of net-p is based on expressing the y dependence of v1 for all protons as:

 $[v_1(y)]_p = r(y)[v_1(y)]_{\bar{p}} + [1 - r(y)][v_1(y)]_{\text{net-}p}$

r: the ratio of anti-p to p.

STAR: Phys. Rev. Lett. 112, 162301(2014) H. Stoecker, Nucl. Phys. A 750, 121(2005)

Directed Flow v_1 : ϕ Mesons

Mesons and all produced anti-baryons show negative slope except φ mesons when collisions energy < 14.5 GeV
 Change of medium property? High precision data are needed.

STAR: Phys. Rev. Lett. 120, 062301(2018)

Energy Dependence v₂

ISMD 2018, 3-7 Sep. 2018, Singapore

STAR 130 and 200 GeV: Phys. Rev. C 66,873 034904 (2002); Phys. Rev. C 72,790 014904 (2005)

Energy Dependence v₂

STAR: Phys. Rev. C 86, 054908(2012) ALICE data: Phys. Rev. Lett. 105, 252302 (2010)

- Three centrality bins
- Consistent v₂(p_T)
 from 7.7 GeV to
 2.76 TeV for p_T > 2
 GeV/c

▷ p_T < 2GeV/c</p>

The v₂ values rise with increasing collision energy

->

Large collectivity? Particle composition?

STAR

Energy Dependence v₂

Similar shape
 of v₂(p_T) for different
 identified particles

Particle vs. Anti-particle v₂

TAR

- Significant difference between baryon and anti-baryon v₂ is observed
- ➢ The relative difference normalized by v_2^{norm} , the proton elliptic flow at $p_T = 1.5$ GeV/c, shows a clear centrality dependence with a bigger effect for the more central collisions

STAR: Phys. Rev. Lett. 110 (2013) 142301 Phys. Rev. C 93, 014907(2016) S. S. Shi: Adv. High Energy Phys. 2016, 1987432 (2016)

Particle vs. Anti-particle v₂

Baryonic Chemical Potential μ_B (MeV)

The difference between particles and anti-particles increases with decreasing beam energy – NCQ scaling breaks

Model comparison

STAR: Phys. Rev. Lett. 110 (2013) 142301

- Hydro + Transport (UrQMD): consistent with baryon data
- Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
- > Analytical hydrodynamic solution: $\Delta v_2^p > \Delta v_2^{\Delta} > \Delta v_2^{\Xi} > \Delta v_2^{\Omega}$

J. Steinheimer et al., PRC86, 44903(2012); J. Xu et al., PRL112, 012301(2014); Y. Hatta et al., PRD92, 114010(2015)

\$\phi\$ meson is less
 sensitive to late
 hadronic interactions^[1]

Sizable ϕ meson v₂: comparable to 19.6 GeV

High statistics and more energies below 20 GeV needed!

STAR: Phys. Rev. C 88, 014902(2013) Phys. Rev. C 93, 014907(2016) [1] STAR: Phys. Rev. Lett. 116, 062301(2016)

Baryon/Meson Separation

A splitting between baryons and mesons is observed at all energies except 7.7 GeV and all centralities.

At 7.7 GeV we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

Baryon/Meson Separation

The splitting between baryons and mesons is observed significant for all energies above 14.5 GeV and also at 14.5 GeV for 40%–80%.

For these energies below 11.5 GeV, we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

Triangular Flow

Better NCQ scaling achieved at 39 GeV (up to 0.8 GeV/c²) and 200 GeV (up to 0.8 GeV/c²) by using scaling factor n_q^{3/2}

STAR: QM2014 R. Lacey, J. Phys. G 38 (2011) 124048

Summary

Study the QGP properties

- $\succ D^{\theta}$ meson v₂: charm quarks flow
- > Mass ordering break for ϕ and proton v_2 :

Hadronic effect on partonic flow

- > Explore the QCD phase structure
 - ➢ v₁: slope of net-proton

Possible signature of the 1st-order phase transition Further progress in models needed

Particle vs. anti-particle v₂

The difference increases with decreasing beam energy

BES-II

Electron cooling + longer beam bunches for BES-II factor 4-15 improvement in luminosity compared with BES-I

uminosity 1/(cm^2 sec)

Detector upgrade

- Event Plane Detector important for flow and fluctuation analyses
- iTPC upgrade increases TPC acceptance to ~1.7 in η; improves dE/dx resolution
- ETOF upgrade

New charged hadron PID capabilities for $1.1 < |\eta| < 1.6$

Fixed target program

extends STAR's physics reach to region of compressed baryonic matter

RHIC BES-II: 2019-2010

19.6, 14.5, 11.5, 9.2 and 7.7 GeV Focus on $\sqrt{s_{NN}} \le 20$ GeV region

