Measurement of rapidity-odd directed flow for D⁰ and D⁰ mesons using the STAR detector at RHIC

Subhash Singha Kent State University (for the STAR Collaboration)

U.S. DEPARTMENT OF

Office of Science

Directed flow in heavy-ion collisions

- Charged pions exhibit negative v1 slope ("anti-flow") near mid-rapidity
- Models with hadronic physics or with baryon stopping and space momentum correlation can qualitatively explain "anti-flow" shape
- In hydro calculations with initially tilted bulk, the "anti-flow" shape is reproduced
- However, the sensitivity of the charged particle $v_1(y)$ to the tilt parameter is not very strong

Heavy quark v₁ from Hydro

- Heavy quarks (HQ) are produced according to binary collision density profile, which is symmetric in rapidity
- At non-zero rapidity, the HQ production points are shifted in the transverse plane with respect to the bulk of the matter causing an enhanced dipole asymmetry in HQ flow pattern
- Additionally, drag by the titled bulk can induce large v₁ for charm quarks
- Heavy flavor (HF) v₁ has strong sensitivity towards the initial tilt of the source

D⁰ v₁ can probe initial bulk matter distribution

X

HF

Bulk 🔘 y

Ζ

Heavy quark v₁ from EM field

- Incoming charged particles can produce an enormously large EM field
- Due to early production of heavy quarks (τ_{CQ}~0.1 fm/c), positive and negative charm quarks can get deflected by the initial EM force
- Model calculation demonstrates that such initial EM field can induce opposite v₁ for charm and anti-charm quarks
- The magnitude of induced v₁ of charm hadrons can be order of magnitude larger than that of the light flavor hadrons

 D^0 and \overline{D}^0 v₁ can offer insight into the early time EM fields

Heavy quark v₁ from Hydro+EM field

- Recent hydro model combined with initial EM field predicts a v_1 split between D and \overline{D} mesons
- Predicted v_1 of D meson is greater than that of \overline{D} meson
- Predicted difference in v_1 is about 10 times smaller than the average v_1

STAR

STAR detector

Subhash Singha, WWND 2019

D⁰ reconstruction with HFT

K-

D⁰ Decav

• Pseudorapidity ($|\eta| < 1$)

STAR

- Azimuthal coverage (0,2π)
- Excellent track pointing resolution
- Allows topological reconstruction for heavy flavor particles

- HFT data from 2014 and 2016 runs
- Total ~ 2 billion good events
- Significance improved by a factor of 15, compared to reconstruction without HFT

$D^0 v_1$ from event plane method

ZDC-SMD Event plane resolution:

- The first-order event plane measured using ZDC-SMD ($|\eta|$ >6.4)
- v₁ signal is significant at forward rapidity
 Better ψ₁ resolution than mid-rapidity detectors
- Large η-gap significantly reduces non-flow contribution

<u>**D**</u>⁰ **v**₁:

- $D^0 v_1$ measured using $\phi \psi_1$ method
- Results are corrected for event-plane resolution

D⁰ directed flow (v₁)

• First evidence of non-zero D⁰ v₁

D⁰ vs. kaons v₁

First evidence of non-zero D⁰ v₁

Charm v_1 slope > Light flavor v_1 slope

• v_1 of D⁰ is about 20 times larger than that of the kaons, with ~3 σ significance

D⁰ vs. kaons v₁

First evidence of non-zero D⁰ v₁

Charm v₁ slope > Light flavor v₁ slope

• v_1 of D⁰ is about 20 times larger than that of the kaons, with ~3 σ significance

So far the largest v₁ slope measured at mid-rapidity at 200 GeV

D⁰ v₁: data vs. hydro

• Our data can help constrain model parameter

D⁰ v₁: data vs. hydro

- In hydro model,
- $D^0 v_1$ is sensitive to the initially tilted source
- $D^0 v_1$ is also sensitive to the temperature dependence of drag coefficient

Simultaneous description of D meson R_{AA} , v_2 and v_1 can provide constraint on the drag coefficient

D^0 and \overline{D}^0 v_1

• Both D^0 and \overline{D}^0 v₁ show a negative slope at mid-rapidity

D^0 and $\overline{D}^0 v_1$

Hydro+EM

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018) Chatterjee, Bojek: 1804.04893v1

- Both D^0 and \overline{D}^0 v₁ show a negative slope at mid-rapidity
- Hydro model combined with EM field predicts the correct sign of v₁
- The magnitude of v_1 depends on the tilt and drag parameter in model

$(D^{0} - \overline{D}^{0}) vs. (K^{-} - K^{+}) v_{1}$

Difference between D⁰ v_1 and \overline{D}^0 v_1 :

- Expected difference between D^0 and $\overline{D}^0 v_1$ is a few percent
- Current precision does not allow to draw firm conclusion on magnetic field induced v₁ splitting

Summary

- First evidence of non-zero directed flow for heavy flavor
- Both D^0 and \overline{D}^0 show negative v_1 slope near mid-rapidity
- Heavy flavor v₁ > light flavor v₁
 Data can be used to constrain the initial tilt in the distribution of the matter
 Data can constrain drag coefficients in conjunction with v₂ and R_{AA} measurements
- Current precision is not sufficient to draw conclusion on magnetic field induced charge separation of heavy quarks

