

Measurement of cumulants of net-proton distributions in Au+Au collisions

at $\sqrt{s_{NN}} = 54.4$ GeV at RHIC Ashish Pandav¹ for the STAR Colloboration

¹National Institute of Science Education and Research, HBNI, Jatni, India

64th DAE-BRNS SYMPOSIUM ON NUCLEAR PHYSICS

1. Motivation

□ Study of the QCD Phase diagram and search for the QCD critical point.

\Box Observables \rightarrow Cumulants of net-particle distributions (B, Q, S) > Related to correlation length and thermodynamic susceptibility. $\succ C_6 < 0$ (net-baryon and net-charge) predicted at crossover tansition.

3. Results

- Event-by-Event Net-Proton Distribution for Various Collision Centralities
- > From peripheral to central collisions
- Mean of net-proton distributions increases
- Width or the sigma of the distributions also increases

2. Analysis Techniques

□ STAR Detector at RHIC

- \succ Full azimuthal angle and $|\eta| < 1$ coverage.
- \succ Uniform acceptance in p_T vs rapidity at midrapidity

Proton Identification

- > TPC: Measures ionisation energy loss of charged tracks.
- > TOF: Measures flight time of charged tracks.
- PID at lower p_T (0.4 < p_T < 0.8 GeV/c): TPC
- PID at higher p_T (0.8 < p_T < 2.0 GeV/c): TPC+TOF

Centrality Definition

Use charged particles other than protons and anti-protons to avoid self-correlation effects.

- $\geq C_3/C_2$ and C_4/C_2 show weak dependence on centrality.
- > Expectations from the UrQMD and HIJING model fail to explain the measurements.

\Box Beam Energy Dependence of the Cumulant Ratio C_4/C_2

- \geq Non-monotonic beam energy dependence of C_4/C_2 with respect to the statistical baseline observed for most central (0-5%) collisions.
- > New measurement at 54.4 GeV agrees with the trend from BES-I results.

□ The Sixth-Order Cumulant

- For most central collisions (0-40%): $C_6/C_2 < 0$ at 200 GeV $C_6/C_2 > 0$ at 54.4 GeV. \blacktriangleright Measurement for C₆/C₂ at 54.4 GeV is consistent with Skellam baseline and
 - UrQMD expectation.

100

प ऊ वि DAE

Centrality Bin Width Correction

p*charge (GeV/c) > Perform weighted average of cumulants measured in each centrality bin in a given centrality to suppress volume fluctuation effect.

Efficiency Correction

 \succ Correct the cumulants for finite detector efficiency assuming the detector response to be binomial.

□ Statistical And Systematic Uncertainties

- > Statistical uncertainties are obtained by bootstrap method.
- > Systematic uncertainties are estimated by varying PID and track selection criteria.

5. References

- □ M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301
- □ *M.A Stephanov et al, Phys.Rev.Lett.* 81 (1998) 4814819
- □ B. Friman et al, Eur.Phys.J. C71 (2011) 1694
- **T**. Nonaka et al, Phys. Rev. C 95, (2017) 064912
- □ X. Luo, J. Phys. G 39, 025008 (2012)
- □ A.Pandav et al, Nucl. Phys. A 991, (2019)121608

□ M.A Stephanov, Phys.Rev.Lett. 102 (2009) 032301 □ Y. Hatta et al, Phys.Rev.Lett. 91 (2003) 102003

- □ X. Luo, Phys. Rev. C 91, (2015) 034907
- □ X. Luo et al, J.Phys. G 40, 105104 (2013)

0.5

□ X.Luo et al, Phys.Rev. C99 (2019) no.4, 044917 □ STAR: PoS CPOD2014 (2015) 019

4. Summary

- □ The cumulants of net-proton distributions up to the fourth order increase with average number of participant nucleons.
- $\Box C_2/C_1$ shows a strong collision centrality dependence whereas C_3/C_2 , C_4/C_2 and C_6/C_2 have a weak collision centrality dependence.
- The centrality dependence of cumulant ratios is only qualitatively reproduced by the UrQMD and HIJING models. Quantitative differences exist.
- \Box The C₆/C₂ of net-proton distribuions for central Au+Au collisions at 54.4 GeV is positive while that for 200 GeV, C_6/C_2 is negative (most central). The observed negative sign of C_6/C_2 at 200 GeV could be experimental evidence of crossover phase transition.