Multiplicity and Rapidity Dependent Study of (Multi)-strange Hadrons in Small Collision System using the STAR Detector

Ishu Aggarwal (for the STAR Collaboration) Panjab University, Chandigarh - India

Outline

- **Motivation**
- Overview of STAR Detector
- Dataset and Analysis Technique
- **Results**
- **Summary**

Supported in part by :

Office of **Science**

Motivation I : Strangeness as a Probe for Deconfinement

Creation of QGP in smaller systems is still under intense debate

Strangeness measurements in d+Au can bridge the multiplicity gap \overline{O}

We want to look for strangeness enhancement for $\mathrm{K_s^0}$, Λ , Ξ , Ω in d +Au collisions at $\sqrt{s_\mathrm{NN}}\,$ = 200 GeV

Motivation II : Probing Cold Nuclear Matter Effects

• Cronin effect studied using nuclear modification factor R

Measurements of particle type and centrality dependence of R_{dAu} (p_T) may help us understand **the mechanism behind Cronin effect**

Motivation II : Probing Cold Nuclear Matter Effects

Rapidity Asymmetry :

$$
Y_{Asym}(p_T)=\tfrac{d^2N/(dp_Tdy)_{-b
$$

Au going side - backward rapidity *d* going side - forward rapidity

O Rapidity Asymmetry provides unique tool to study contributions from nuclear effects (nuclear shadowing, multiple scattering etc.) to the particle production

A solid understanding in cold nuclear matter effects is essential to distill the potential QGP signal

Overview of STAR Detector

- The **S**olenoidal **T**racker **A**t **R**HIC, known as **STAR**, tracks the thousands of particles produced by heavyion collisions at RHIC
- STAR detector is used to study the signatures of the Quark Gluon Plasma (QGP) formation
- Time Projection Chamber (TPC) is the main detector https://www.osti.gov/servlets/purl/1477969 **used for the analysis**

Centrality is estimated by calculating number of charged tracks ($|\eta|$ < 0.9) in d+Au 200 GeV and comparing it to the Glauber model simulations

Dataset and Particle Identification

- •Year : 2016
- •Events analyzed ~100M
- •Particles studied : $\mathrm{K^0_s}, \, \Lambda, \, \Xi$ & Ω

 $\text{K}^0_\text{s} , \Lambda , \Xi , \Omega$ are reconstructed via their **hadronic decay channels :**

$$
\begin{aligned}\n&\text{o} \quad K_s^0 \rightarrow \pi^+ + \pi^-, \text{ B.R. 69.2\%} \\
&\text{o} \quad \Lambda(\overline{\Lambda}) \rightarrow \text{p}(\overline{\text{p}}) + \pi^-(\pi^+), \text{ B.R. 63.9\%} \\
&\text{o} \quad \Xi^-(\overline{\Xi}^+) \rightarrow \Lambda(\overline{\Lambda}) + \pi^-(\pi^+), \text{ B.R. 99.8\%} \\
&\text{o} \quad \Omega^-(\overline{\Omega}^+) \rightarrow \Lambda(\overline{\Lambda}) + \text{K}^-(\text{K}^+), \text{ B.R. 67.8\%}\n\end{aligned}
$$

Chin. Phys. C **40**, 100001 (2016)

Transverse Momentum Spectra at Mid-rapidity (|y| < 0.5)

- p⊤ spectra of $\rm K^0_s$, $\rm \Lambda(\bar{\Lambda}),$ $\Xi^-(\bar{\Xi}^+)$ & $\rm \Omega^-(\bar{\Omega}^+)$ are corrected for acceptance & efficiency and respective branching ratios
- Λ spectra are corrected for weak decay feed down from Ξ $\mathsf O$

Integrated yields and $\langle p_T \rangle$ as function of Multiplicity

- dN/dy increases as function of $dN_{ch}/d\eta$
- $\langle p_T \rangle$ is larger for heavier particles & hint of increase is observed as function of $dN_{ch}/d\eta$:
	- Supports the picture of collective evolution (radial flow)
- Particle production is driven by dN_{ch}/d*η* not by collision species.

STAR : Phys. Rev. C **75**, 064901 (2007) STAR : Phys. Rev. Lett. 108, 072301 (2012) STAR : Phys. Rev. C 79, 034909 (2009) STAR : Phys. Rev. C 83, 034910 (2011)

- Smooth transition of ratios of the particles from p+p to A+A collisions
- d+Au system fills the gap between p+p and peripheral Cu+Cu & Au+Au collisions
- Data from different collision systems follow similar trend
- Yield ratio of particles to pions with more strangeness content decrease faster from high to low multiplicity

Strangeness Enhancement

- Strange particle yields in d+Au 200 GeV are enhanced as compared to \overline{O} p+p collisions
- Strange particle yields increase as a function of $\langle N_{\text{part}}\rangle$ \overline{O}

 Λ data points are p_T shifted by 0.1 GeV/c for clarity.

π,K,p data are from STAR : Phys.Lett.B (2006) : 637 STAR : *Phys.Lett.B* (2005) : 616

$$
R_{dAu}(p_T) = \frac{d^2N/(2\pi p_T dp_T dy)}{T_{dAu}d^2\sigma^{pp}/(2\pi p_T dp_T dy)}
$$

$$
T_{dAu} = \langle N_{bin} \rangle / \sigma_{inel.}^{pp}
$$

- Cronin like enhancement is \overline{O} observed for $\mathrm{K}^{0}_{\mathrm{s}},$ \wedge & Ξ at intermediate p_T
- Enhancement in d+Au compared to p+p for p_T in 2-4 GeV/c is stronger for baryons $(\Xi, \Lambda$ & p) compared to mesons $(\mathrm{K}^{0}_{\mathrm{s}},\,\pi)$

SEVIE

Integrated yields and $\langle p_T \rangle$ as function of Rapidity

- dN/dy slightly decreases from negative to positive rapidities for K^0_s , $\Lambda(\bar{\Lambda})$ & $\Xi^-(\bar{\Xi}^+)$ \langle p $_{\rm T}\rangle$ is flat vs y for $\rm K^0_{\rm s}$, $\rm \Lambda(\bar{\Lambda})$ & $\Xi^-(\bar{\Xi}^+)$: similar radial flow
- Theoretical calculations are welcome

 $Y_{\rm asym}(p_{\rm T})=\frac{{\rm d}^2N(p_{\rm T})/{\rm d}y_{\rm CM}{\rm d}p_{\rm T}|_{y_{\rm CM}\in[-b,-a]}}{\rm d^2N(p_{\rm T})/{\rm d}y_{\rm CM}{\rm d}p_{\rm T}|_{y_{\rm CM}\in[a,b]}}.$

- \circ Y_{Asym} > 1 is observed at low p_T
	- Signifies the presence of nuclear effects
- \circ Consistent with unity at high p_T .
- Asymmetry is more prominent for
	- Higher rapidity intervals $(0.4 <$ $|y| < 0.8$
	- Heavier mass particle

Summary

- **SEVIE:**
- We have presented **Multiplicity and Rapidity dependent studies of** K^0_s **,** $\mathrm{\Lambda},$ Ξ and Ω in d+Au collisions at $\sqrt{\mathrm{s_{NN}}}$ = 200 GeV
- **Particle production is independent of collision system** and mainly driven by multiplicity
- Yields of $\rm K^0_s, \, \Lambda(\bar\Lambda),$ $\Xi^-(\bar\Xi^+)$ & $\Omega^-(\bar\Omega^+)$ in d+Au are observed to be higher than in p+p collisions at 200 GeV : **Strangeness enhancement**
- **Nuclear modification factors (R_{dAu})** for $\mathrm{K^0_s}, \, \Lambda$ and Ξ show Cronin like enhancement
- **Integrated yield as function of rapidity** decreases from negative to positive rapidity region while $\langle \mathrm{p_T}\rangle$ remains flat.
- **Rapidity asymmetry** for K^0_s , Λ and Ξ is observed
	- At low p_T : indicating presence of nuclear effects
	- Asymmetry is more pronounced for higher rapidity region and for heavier mass particle

BACK UP

Probing Cold Nuclear Matter Effects in CMS

Rapidity Asymmetry Studied in CMS :

 $Y_{\text{asym}}(p_{\text{T}}) = \frac{\mathrm{d}^2 N(p_{\text{T}})/\mathrm{d}y_{\text{CM}} \mathrm{d}p_{\text{T}}|_{y_{\text{CM}} \in [-b,-a]}}{\mathrm{d}^2 N(p_{\text{T}})/\mathrm{d}y_{\text{CM}} \mathrm{d}p_{\text{T}}|_{y_{\text{CM}} \in [a,b]}}.$

- $Y_{asym} > 1$ is observed at low p_T
	- o Signifies the presence of nuclear effects
- Consistent with unity at high p_T
- More prominent for higher rapidity interval $(1.3 < |y| < 1.8)$
- Asymmetry is stronger for Λ as compared to that for $K^0_{\rm s}$

Baryon to Meson Ratio

STAR : Phys. Rev. C **75**, 064901 (2007) STAR : Phys. Rev. Lett. 108, 072301 (2012) STAR : Phys. Rev. C 79, 034909 (2009)

- $\mathcal{N}\mathrm{K}_{\mathrm{s}}^0$ are significantly enhanced in central Au+Au collisions at 200 GeV compared to p+p
	- recombination of thermalized strange quarks in QGP / radial flow…
- ${\rm \mathcal{N}\rm K}_{\rm s}^0$ in 0-20% d+Au at intermediate p_T is larger compared to 20-50% d+Au and p+p collisions
- Baryon enhancement is observed in central d+Au 200 GeV
- Similar radial flow for strange particles in 20-50% d+Au and p+p collisions

Transverse Momentum Spectra at Different Rapidities

p $_{\rm T}$ spectra of $\rm K_{\scriptscriptstyle S}^0$, $\rm \Lambda(\bar{\Lambda}),$ $\Xi^-(\bar{\Xi}^+)$ for different rapidities are corrected by acceptance & efficiency and respective branching ratios

Transverse Momentum Spectra at Different Rapidities

p $_{\rm T}$ spectra of $\rm K_{\scriptscriptstyle S}^0$, $\rm \Lambda(\bar{\Lambda}),$ $\Xi^-(\bar{\Xi}^+)$ for different rapidities are corrected by acceptance & efficiency and respective branching ratios