Precision Measurement of (Net-)proton Number Fluctuations in Au+Au Collisions from BES-II Program at RHIC-STAR

Bappaditya Mondal for the STAR Collaboration

National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

19th - 23rd Dec, 2024

Outline :

1) Introduction : QCD Phase Diagram

2) Observables

3) Analysis details

4) Results

5) Summary and Outlook

Introduction- QCD phase diagram

Observables: Fluctuation of conserved quantities are sensitive observables to study QCD phase diagram.

Bappaditya Mondal, DAE-HEP, Dec 2024

Observables

Higher order cumulants of (net-) proton multiplicity distribution

Cumulants

$$C_{1} = \langle N \rangle$$

$$C_{2} = \langle (\delta N)^{2} \rangle \quad here, \delta N = N - \langle N \rangle$$

$$C_{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

Factorial Cumulants

$$\kappa_{1} = C_{1}$$

$$\kappa_{2} = -C_{1} + C_{2}$$

$$\kappa_{3} = 2C_{1} - 3C_{2} + C_{3}$$

$$\kappa_{4} = -6C_{1} + 11C_{2} - 6C_{3} + C_{4}$$

C₂∼ξ² C₄∼ξ⁷ finite size/time effects reduce ξ Higher order -> More sensitive

Related to Susceptibility: Comparison with models

$$\frac{C_4}{C_2} = \kappa \sigma^2 = \frac{\chi^{(4)}}{\chi^{(2)}}$$

Gupta, Luo, Mohanty, Ritter, Xu, Science 332 (2011) R.V. Gavai and S. Gupta, PLB696, 459(2011) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(2006)

Theory expectation: Presence of critical point -> non-monotonic collision energy dependence of C₄/C₂

Result from BES-I

BES-II Program

• Upgrades in BES-II:

Collider Runs			Fixed-Target Runs				
Sl. no.	$\sqrt{s_{_{NN}}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)	Sl. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ_B (MeV)
1	200	380	25	1	13.7 (100)	50	280
2	62.4	46	75	2	11.5 (70)	50	316
3	54.4	1200	85	3	9.2 (44.5)	50	372
4	39	86	112	4	7.7 (31.2)	260	420
5	27	585	156	5	7.2 (26.5)	470	440
6	19.6	595	206	6	6.2 (19.5)	120	490
7	17.3	256	230	7	5.2 (13.5)	100	540
8	14.6	340	262	8	4.5 (9.8)	110	590
9	11.5	257	316	9	3.9 (7.3)	120	633
10	9.2	160	372	10	3.5 (5.75)	120	670
11	7.7	104	420	11	3.2 (4.59)	200	699
	BES-	II collider	result	12	3.0 (3.85)	260 + 2000	750

Au+Au Collisions at RHIC

mprovement in statistics:

$\sqrt{s_{_{NN}}}(GeV)$	7.7	9.2	11.5	14.5	17.3	19.6	27
Events BES-I (10 ⁶)	3	-	7	20	-	15	30
Events BES-II (10 ⁶)	45	78	110	178	116	270	220

 $3 \leq \sqrt{s_{NN}} (GeV) \leq 200 \longrightarrow 750 \geq \mu_B (MeV) \geq 25$

(widest $\mu_{\rm B}$ coverage to date)

✓ Two new collider energy: 9.2 & 17.3 GeV.

✓ In BES-II, about 10 – 18 times increase in statistics for Au + Au collision.

Bappaditya Mondal, DAE-HEP, Dec 2024

Centrality, PID & net-proton distribution

Precision of measurements

Percentage statistical and systematic error in net-proton cumulants in 0-5% centrality

$\sqrt{s_{NN}}$	7.7 C	JeV	19.6 GeV		
	% stat.	% sys.	% stat.	% sys.	
	error	error	error	error	
$C_{2/}C_{1}$	0.1%	0.3%	0.06%	0.3%	
$C_{3/}C_{2}$	2.1%	1.3%	0.7%	1%	
$C_{4/}C_{2}$	61%	29%	22%	11%	

Reduction factor in uncertainties in 0-5% C_4/C_2 : BES-II vs BES-I

7.7 C	JeV .	19.6 GeV		
stat. error	sys. error	stat. error	sys. error	
4.7	3.2	4.5	4	

Precision measurement. Better quality of data. Better statistical precision. Better control on systematics.

Centrality dependence: net-proton cumulant ratios

Bappaditya Mondal, DAE-HEP, Dec 2024

C_4/C_2 energy dependence: BES-I vs BES-II

Deviation between BES-I and BES-II:

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%
7.7	1.0 <i>o</i>	0.9 <i>o</i>
11.5	0.4 <i>o</i>	1.3σ
14.6	2.2σ	2.5σ
19.6	0.7σ	0.0 <i>o</i>
27	1.4 <i>o</i>	0.2 <i>o</i>

BES-II consistent with BES-I within uncertainties.

Significantly improved precision.

Quantification of deviation

Non-CP Models: Hydro, HRG-CE, UrQMD (All models include baryon number conservation).

C /C, shows minimum around ~20 GeV comparing to non-CP models, 70-80% data.

Maximum deviation: 3.2 – 4.7σ at 20 GeV (1.3 – 2σ at BES-I).

Energy dependence: proton factorial cumulant ratios

Deviate from poisson baseline at 0.

Peripheral results (70-80%) closer to 0.

UrQMD do not fully describe the data.

p₊ & y dependence study.

necessary data and computing resources.

We thank DAE and DST for funding the project.

Bappaditya Mondal, DAE-HEP, Dec 2024

12/12