Future Physics Program with Tagged Forward Protons at RHIC

J.H. Lee For STAR Collaboration BNL

April 29, DIS09, Madrid

Relativistic Heavy Ion Collider (RHIC): <u>THE QCD Factory</u>

OCD is the theory of strong interaction: "Theoretical evidences" vs. current and future Experimental QCD measurements at RHIC

- Confinement/ phase of QCD QGP
- Distribution of spin in the nucleon Spin sum rule
- Parton splitting limit Saturated gluon state (Color Glass Condensate...)
- Gluonic degree of freedom in Hadrons exotica (glueballs...)
- Nature of diffractive processes
 - structure of Pomeron, Odderon...

near Future Program with tagged forward protons at RHIC studying:

Elastic scattering for understanding structure of Pomeron and Odderon

Central production for searching for glueballs in Double Pomeron Exchange (DPE) processes

Summary of the Existing Elastic Data (unpolarized)

Highest energy so far:

- pp: 62 GeV (ISR)
- pp: 1.8 Tev (Tevatron)
- **RHIC** energy range:
 - 50 GeV $\leq \sqrt{s} \leq$ 500 GeV

Elastic measurements: Details on the nature of elastic scattering at the energy are NOT well understood in the energy range: Unique measurements in wide trange with polarized beams

Can Odderon be identified at RHIC?

Odderon is a counterpart of pomeron (C=1) with C=-1: "RHIC is the machine to find it" (E. Leader, Odderon Workshop (2005)) by measuring

- $\Delta \sigma_{pp} \Delta \sigma_{pbarp} \neq 0 \ (\sim 3mb)$
- $d\sigma/dt_{pp} \neq d\sigma/dt_{pbarp}$
- Shape of Asymmetries: A_{NN}
- Centrally produced C=-1 particle

Implementation at RHIC - Detectors

- Need detectors (Roman Pots) to measure forward protons: small t (four-momentum transfer) and ξ (= 1-x_F)
- Detector with good acceptance and particle ID (STAR) to measure centrally produced system

Roman Pots used (2002-2003) for pp2pp experiment at RHIC

Now RPs moved to STAR

Roman Pots (Phase I)

- Phase I: 8 Roman pots at ±55.5, ±58.5m from the IP
- Require special beam tune : large β* (21m for √s=200 GeV) for minimal angular divergence
- Ready to run in 2009: Will be focusing smallt processes (0.002<|t|<0.03 GeV²)

Roman Pots (Phase II)

- Phase II: 8(12) Roman Pots at ±13 and ±16m
- Planed to be implemented in 2010-2011
- Doesn't require special beam tune: main set-up for central DPE processes requiring wide-t coverage and high-luminosity
- 2π coverage will be limited due to machine constraint

t-Acceptance of Roman Pots

Trigger and Data Reconstruction

Trigger

- Elastic (collinear) and inelastic trigger
- Multiplicity trigger using TOF barrel for selecting low multiplicity (0<N<6) central events as used in STAR UPC Trigger
- Rapidity gap trigger using Beam-Beam counters
- Reconstruction
 - Scattered proton momentum momentum reconstruction using RPs and beam transport
 - STAR TPC tracking in |y|<1 with TOF barrel and TPC PID (π/K separation up to~ 1.6 GeV/c)

Ultra-Peripheral Collision (UPC) program with AuAu in STAR

Complementary program with central production in p+p

- Spectroscopy in photoproduction
- Common machinery: trigger, data reconstruction...

Inelastic Process: DPE $p_1p_2 \rightarrow p_{1'}M_Xp_{2'}$

- Exclusive process with "small" momentum transfer: $-t_1(p_1 \rightarrow p_1)$ and $-t_2(p_2 \rightarrow p_2)$
- M_X is centrally (nearly at rest) produced via a Double Pomeron Exchange/Fusion
- Pomeron is considered to be made of two gluons: natural place to look for gluon bound state
- □ $M_X(~1 3 \text{ GeV/c}^2) \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, K^+K^-$
- □ Lattice cal.: Lightest glueball M(0⁺⁺)=1.5-1.7 GeV/c²
- Search for glueball (gg) candidates in M_x
- Candidates with conventional quantum numbers: need (kinematic) "filtering"

Quantum number "filter" for PP

- Pomeron has vacuum
 Quantum number
 (P=C=+1, colorless)
- DPE cannot produce
 I=1 state such as
 ρ(770) (Isospin conservation)
 - B=Q=S=0, I^GJ^{PC} = 0⁺even⁺⁺
 - f_J(1710) 0+even++

. . .

- Coupling of the exchange particles to the final state mesons for gluon exchange (small dp_T) and quark exchange (large dp_T)
- Spin-dependence of the coupling can be studied at RHIC

April 29 DIS09

Acceptance and expected yields in M_X

Expected reconstructed phase-space including BR per 1M DPE events

- $\square M_x = 1-3 \text{ GeV/c}^2 \text{ is kinematically well accessible in pion and Kaon decay channels}$
- **u** High-Mx reconstruction is limited by PID (π/K separation up to ~ 1.6 GeV/c)
- Expected Trigger rate for DPE: 80 Hz at $\mathcal{I} = 1 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
- To collect 100K K⁺K⁻ sample, needs ~200 hr of running time
- Phase I setup is expected to produce an exploratory data sample of ~100K $\pi^+\pi^-$ with 2 days of running with special beam tune ($\beta^*=21m$) this year

April 29 DIS09

Phase II and beyond

Phase I and II set-up covers 0.002<t<1.3 GeV²

Depending on the physics needs/requirements deduced from first measurements, further upgrade will be pursued Possibilities of new measurements: central production of exclusive Charmonium?

Looking "Forward"

- New rich physics program at RHIC with tagged forward protons have been initiated.
- Unique machine and detector capabilities enable us explore important aspect of our understanding of strong interaction.

Backup Slides

RHIC as $p^{\uparrow}p^{\uparrow}$ Collider

dp_T "filter": WA102

342

Fig. 3. K^+K^- mass spectrum for a) $dP_T < 0.2$ GeV, b) $0.2 < dP_T < 0.5$ GeV and c) $dP_T > 0.5$ GeV and the $\pi^+\pi^-\pi^+\pi^-$ mass spectrum for d) $dP_T < 0.2$ GeV, c) $0.2 < dP_T < 0.5$ GeV and f) $dP_T > 0.5$ GeV.

J.H. Lee

Inclusive Double Pomeron interaction at

Fig. 3. Invariant mass distributions for the central π^+ π^- , $2\pi^+$ $2\pi^-$, and $3\pi^+$ $3\pi^-$ systems from reactions (1–3) respectively (in µb per 100 MeV bin). This figure, and all subsequent figures, show data which have been acceptance corrected