Diffractive Physics Program with Tagged Forward Protons at STAR/RHIC

J.H. Lee
For STAR Collaboration

Outline

- Diffraction measurements with Roman Pots in STAR at RHIC (Phase I, Phase II)
- Polarized elastic diffraction
 - Motivation
 - Preliminary results on Single Spin Asymmetries at CNI region
- Inelastic diffraction: central production
 - Motivation
 - First look at the data
- Outlook

RHIC as p[†]p[†] Collider

Diffractive Physics Program with tagged forward protons at RHIC studying mainly:

Polarized elastic scattering for understanding structure of Pomeron (and Odderon)

Central production for searching for the glueball in Double Pomeron Exchange (DPE) processes

Forward Proton Tagging

- Roman Pot (RP) detectors to measure forward scattered protons in diffractive processes
 - Staged implementation to cover wide kinematic coverage
 - Phase I (Installed): for low-t coverage
 - Phase II (planned) : for higher-t coverage

Summary of the Existing Elastic Data (unpolarized)

- Highest energy so far:
 - pp: 62 GeV (ISR)
 - $\overline{p}p$: 1.8 TeV (Tevatron)
- RHIC energy range:
 - 50 GeV $\leq \sqrt{s} \leq$ 500 GeV
- Elastic measurements: Details on the nature of elastic scattering at high energy (Pomeron) are NOT well understood: Unique measurements in wide t-range with polarized beams

Can Odderon be identified at RHIC?

Leader, Trueman PRD 61 (2000), hep-ph/0604153

- Odderon is a counterpart of Pomeron (C=1) with C=-1 and not yet experimentally established: "RHIC is the machine to find it" (E. Leader, Odderon Workshop (2005)) by measuring
 - $\Delta \sigma_{pp} \Delta \sigma_{pbarp} \neq 0 \ (\sim 3mb)$
 - $= d\sigma/dt_{pp} \neq d\sigma/dt_{pbarp}$
 - Shape of Asymmetries: A_{NN}
 - Centrally produced C=-1 particle

Probing the Spin-Structure of Pomeron: Single Spin Asymmetries (A_N) at the Coulomb-Nuclear Interference (CNI) Region

- □ Hadronic spin-flip (QCD) part can be measured as a modification of A_N from the CN interference (QED) at small-t region (Kopeliovich, Lapidus 1974)
- \square A_N data at CNI region available at lower energies (\sqrt{s} <20 GeV). At the RHIC energies, hadronic diffractive processes are expected to be dominated by the **Pomeron**

First high-statistics measurement of CNI at high-energy (\sqrt{s} =200 GeV)

- \square Statistical errors + systematic *t*-scale uncertainty (10%) in the fit
- □ Higher-t reach planned from the upcoming √s=500 GeV (and with Phase II set-up) at RHIC

Hadronic Spin-Flip amplitude

Fit to the data with hadronic spin-flip (r₅-fit)

$$r_5 = \operatorname{Re} r_5 + i \operatorname{Im} r_5 = \frac{m\phi_5}{\sqrt{-t} \operatorname{Im} \phi_+}$$
 relative amplitude between hadronic spin-flip (Φ_5) and non-flip (Φ_+) helicity amplitudes

No significant Hadronic spin-flip required in the fit

t-Acceptance of Roman Pots

- Phase I set-up focuses on low-t (installed)
- Phase II covers higher-t range (planned to be installed in 2013)

11

Inelastic Process: DPE

$$p_1p_2 \rightarrow p_1'M_Xp_2'$$

- Exclusive process with "small" momentum transfer: $-t_1(p_1 \rightarrow p_1')$ and $-t_2(p_2 \rightarrow p_2')$
- \blacksquare M_X is centrally (nearly at rest) produced via a Double Pomeron Exchange/Fusion
- In pQCD, Pomeron is considered to be made of two gluons: natural place to look for gluon bound state
- □ M_X (~1 3 GeV/c²) → $\pi^+\pi^-$, $\pi^+\pi^-\pi^+\pi^-$, K^+K^- ,...
- Lattice cal.: Lightest glueball M(0++)=1.5-1.7 GeV/c² (PRD73 2006)
- Search for glueball (gg) candidates in M_x
- Candidates with conventional quantum numbers: need to be studied in wide kinematic ranges

DPE Central Production at RHIC

- Pomeron (IP) dominant over Reggeon (R) exchanges
 - $\sigma_{RR} \sim s^{-2}$, $\sigma_{RP} \sim s^{-1}$, $\sigma_{PP} \sim const.$ (or s^{x} where $x \sim O(0.1)$)
- Wide rapidity gap
 - Beam rapidity at $\sqrt{s} = 500 \text{ GeV}$: $y_{beam} \sim 6.3$
 - $M_X < 3 \text{ GeV/c}^2 \text{ will have a rapidity gap } > 4 \text{ units}$
- Higher reach in M_x
 - 200 GeV: $M_{x \text{ max}} \sim 10 \text{ GeV/c}^2$,
 - 500 GeV: $M_{x \text{ max}} \sim 25 \text{ GeV/c}^2$
- Polarization dependence of DPE: provide extra constraint for theoretical interpretation and DPE filtering

Reconstructing centrally produced system in the STAR detector

STAR: Large Acceptance Detector running since 2000

- □ High resolution tracking device: TPC in $-1 < \eta < 1$, $-\pi < \phi < \pi$
- Forward rapidity gap veto
 - FTPC: $2.5 < |\eta| < 4.2$, BBC: $3.8 < |\eta| < 5.2$
- Excellent particle identification capability: TPC dE/dx, ToF

14

First Look at DPE data from Phase I set-up

- Taken with RP and ToF multiplicity triggers for the central process
- Track reconstruction in TPC
- Two reconstructed tracks in opposite direction in the RPs
- Work in progress for identifying exclusive DPE events: rapidity gaps, PID, p_T-balance, missing-mass...
- □ Main data taking will be with Phase II set-up at \sqrt{s} =500 GeV

Expected yields as function of M_X

at $\sqrt{s}=500$ GeV

- Expected reconstructed phase-space including 140 μbarn DPE Cross-section and branching ratios measured at ISR per 25M DPE events
- M_x=1-3 GeV/c² is kinematically well accessible in pion and Kaon decay channels
- Expected Trigger rate for DPE: $\sim 100 \text{ Hz at } \mathcal{L} = 1 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$
- □ 20 Week RHIC running: ~2M K⁺K⁻ ~6M $\pi^+\pi^-\pi^+\pi^-$ sample

Summary

- New diffractive physics program with the STAR detector at RHIC to study properties of the Pomeron and search for the Odderon and the Glueball
 - At high energies where the Pomeron interaction is expected to be dominating
 - Using large acceptance and high resolution detector
 - With polarized high luminosity beam
- First high statistics data of spin asymmetries at CNI region and more to come
- Looking forward to rich diffractive and spectroscopy programs with staged Roman Pot implementation at STAR

Back-Up

Spin Dependence in Elastic Scattering

Five independent helicity amplitudes describe proton-proton elastic scattering

$$\phi_1(s,t) \propto \langle ++ \mid M \mid ++ \rangle \leftarrow \text{non-flip}$$
 $\phi_2(s,t) \propto \langle ++ \mid M \mid -- \rangle \leftarrow \text{double-flip}$
 $\phi_3(s,t) \propto \langle +- \mid M \mid +- \rangle \leftarrow \text{non-flip}$
 $\phi_4(s,t) \propto \langle +- \mid M \mid -+ \rangle \leftarrow \text{double-flip}$
 $\phi_5(s,t) \propto \langle ++ \mid M \mid +- \rangle \leftarrow \text{single-flip}$

$$\phi_{i}(s,t) = \phi_{i}^{em}(s,t) + \phi_{i}^{had}(s,t)$$

$$\phi_{+} = \frac{1}{2}(\phi_{1} + \phi_{3})$$

$$\phi_{-} = \frac{1}{2}(\phi_{1} - \phi_{3})$$

$$\phi_{i}^{had} = \phi_{i}^{R} + \phi_{i}^{Asympt}$$

19

Some of the measured quantities are

$$\sigma_{tot}(s) = \frac{4\pi}{s} \text{Im} [\phi_{+}(s,t)]_{=\theta}$$
 σ_{tot} of gives s dependence of ϕ_{+}

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2)$$
 Contributes to the shape of A_N

Experimental Determination of A_N

Use Square-Root-Formula to calculate

spin ($\uparrow \uparrow$, $\downarrow \downarrow$) and false asymmetries ($\uparrow \downarrow$, $\downarrow \uparrow$)

$$A_{N}(\varphi) = \frac{1}{(P_{1} + P_{2})\cos\varphi} \frac{\sqrt{N_{L}^{\uparrow\uparrow}N_{R}^{\downarrow\downarrow}} - \sqrt{N_{R}^{\uparrow\uparrow}N_{L}^{\downarrow\downarrow}}}{\sqrt{N_{L}^{\uparrow\uparrow}N_{R}^{\downarrow\downarrow}} + \sqrt{N_{R}^{\uparrow\uparrow}N_{L}^{\downarrow\downarrow}}}$$

$$A_N^F(\varphi) = \frac{1}{(P_1 + P_2)\cos\varphi} \frac{\sqrt{N_L^{\uparrow\downarrow}N_R^{\downarrow\uparrow}} - \sqrt{N_R^{\uparrow\downarrow}N_L^{\downarrow\uparrow}}}{\sqrt{N_L^{\uparrow\downarrow}N_R^{\downarrow\uparrow}} + \sqrt{N_R^{\uparrow\downarrow}N_L^{\downarrow\uparrow}}}$$

Since A_N is a relative measurement the efficiencies ϵ (t, ϕ) cancel

20

Measurements of A_N as a function of \sqrt{s} and t

21

Kinematic "filter" (dp_T) for "gg" (F. Close et al./W102)

- $lue{}$ Coupling of the exchange particles to the final state mesons for gluon exchange (small dp_T) and quark exchange (large dp_T)
- Filtering angular momentum?
- Spin-dependence of the coupling can be studied at RHIC

Roman Pots (Phase II)

- Phase II: 8(12) Roman Pots at ±15 and ±17m
- □ Planed to be implemented in ~2013
- Doesn't require special beam optics: main set-up for central DPE processes requiring wide-t coverage and high-luminosity
- 2π coverage in φ will be limited due to machine constraint (incoming beam)

"filter": WA102 (\s=29 GeV)

342

Fig. 3. K^+K^- mass spectrum for a) $dP_T < 0.2$ GeV, b) $0.2 < dP_T < 0.5$ GeV and c) $dP_T > 0.5$ GeV and the $\pi^+\pi^-\pi^+\pi^-$ mass spectrum for d) $dP_T < 0.2$ GeV, e) $0.2 < dP_T < 0.5$ GeV and f) $dP_T > 0.5$ GeV.

24

April 21 DIS10 J.H. Lee

Central Production Spectroscopy experiments/publications

- ■Many measurements in √s ~10-60 GeV
 - Fixed Target
 - CERN Ω (~1990)
 - \blacktriangleright WA76 (\sqrt{s} =12.6 GeV), WA91(23.7), WA102(29.1)
 - CERN GAMS ($\sqrt{s} = 29.1$) (~1990)
 - FNAL E690 (\sqrt{s} =38.8) (~1990)
 - Collider
 - ISR AFS R807 ($\sqrt{s} = 62$) (\sim 1980)
- In this energy range, likely significant Reggeon-Reggeon contribution: difficulties in interpretations

dp_T-dependent accepted yield (Simulation for Phase II)

- \Box dp_T = |p_{T1} p_{T2}| for the "kinematic filter"
- No significant dp_T -dependence in shape of the acceptance in $M_X > 1$ GeV/c²

April 21 DIS10 J.H. Lee

26