Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}p$ collisions at $\sqrt{s} = 200$ and $\sqrt{s} = 510$ GeV at STAR

Navagyan Ghimire for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

The transversity distribution, $h_1^q(x)$, describes transversely polarized quarks inside 1 a transversely polarized nucleon. As $h_1^q(x)$ is chiral-odd, it can only be accessed via 2 a process where it couples to another chiral-odd function, such as the spin-dependent 3 interference fragmentation function (IFF), in $p^{\uparrow}p$ collisions. The coupling of $h_1^q(x)$ 4 and IFF yields an experimentally measurable di-hadron correlation asymmetry, A_{UT} . 5 To access $h_1^q(x)$ at high Q^2 , where the QCD calculation is well understood, precise 6 measurement of A_{UT} at high center-of-mass energies, \sqrt{s} , is crucial. Previously, the 7 STAR experiment at RHIC has measured non-zero A_{UT} using $p^{\uparrow}p$ data at $\sqrt{s} = 200$ 8 GeV recorded in 2006 with an integrated luminosity of 1.6 pb⁻¹ and $\sqrt{s} = 500$ GeV 9 recorded in 2011 with an integrated luminosity of 25 pb^{-1} . In 2015 and 2017, STAR 10 collected additional ~ 52 pb⁻¹ of $p^{\uparrow}p$ data at $\sqrt{s} = 200$ GeV and ~ 350 pb⁻¹ of 11 $p^{\uparrow}p$ data at $\sqrt{s} = 510$ GeV, which will significantly improve the statistical precision 12 of A_{UT} measurement and thus further constrain global fits of $h_1^q(x)$, especially for 13 0.07 < x < 0.4. We will present preliminary results for 2015 data and an update for 14 2017 data on the A_{UT} measurement for charged pion pairs in the pseudorapidity region 15 $|\eta| < 1.$ 16