Transverse Single Spin Asymmetry for Inclusive and Diffractive Electromagnetic Jets at Forward Rapidities in $p^{\uparrow}+p$ Collisions at $\sqrt{s} = 200 \, GeV$ and $510 \, GeV$ at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside, CA, USA

Abstract

There have been numerous attempts, both theoretical and experimental, to understand the origin of the unexpectedly large transverse single spin asymmetry (A_N) for the inclusive hadron production at forward rapidities observed in $p^{\uparrow}+p$ collisions at various center-of-mass energies. The twist-3 contributions in the collinear factorization framework and the transverse-momentum-dependent contributions from the initial-state quark and gluon Sivers functions and/or final-state Collins fragmentation functions are potential explanations to this puzzle. Previous analyses of A_N for forward π^0 and electromagnetic jets in $p^{\uparrow}+p$ collisions at STAR indicated that there might be non-trivial contributions to the large A_N from diffractive processes [1]. The STAR Forward Meson Spectrometer (FMS) and Endcap ElectroMagnetic Calorimeter (EEMC) can detect photons, neutral pions, and eta mesons in the forward direction, with pseudorapidity coverages of $2.6 < \eta < 4.2$ and $1.0 < \eta < 2.0$, respectively. In this talk, we will present the latest preliminary results and analysis updates on A_N for inclusive and diffractive electromagnetic jets in the FMS and EEMC using $p^{\uparrow}+p$ data at $\sqrt{s}=200$ GeV and 510 GeV collected at STAR.

References

1

5

8

q

10

11

12

13

14

15

16

17

18

19

[1] (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)