Very low- p_T di-muon production in peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV} \text{ at STAR}$

Ziyang Li (for the STAR Collaboration) University of Science and Technology of China

Abstract

The strong electromagnetic field generated by the colliding nuclei in heavyion collisions can be represented by a spectrum of photons, leading to photon-2 induced interactions. While such interactions are traditionally studied in ultra-3 peripheral collisions (UPC) without any nuclear overlap, significant enhancements 4 of dilepton pair and J/ψ production at very low transverse momentum (p_T) above 5 the expected hadronic interaction yields have been observed experimentally. The observed excess yields exhibit a much weaker centrality dependence compared to 7 the hadronic production and are consistent with photon-induced interactions. The 8 measurements of very-low- p_T particle production in peripheral heavy-ion collisions q provide a unique opportunity to study photoproduction in heavy-ion collisions with 10 well-defined and smaller impact parameters compared to that in UPC. 11

In 2014 and 2016, the STAR experiment recorded large samples of Au+Au collisions at $\sqrt{s_{\text{NN}}} = 200 \text{ GeV}$. In this presentation, we will present new measurements of very-low- p_T dilepton and J/ψ production in peripheral Au+Au collisions via the $\mu^+\mu^-$ channel using these datasets. The dimuon channel provides complementary measurement to the previous dielectron results and improves the precision. Distributions of invariant mass, p_T^2 and angular modulation will be shown. Physics implications will also be discussed together with model comparisons.