Measurements of Transverse Spin Dependent $\pi^+\pi^-$ Azimuthal Correlation Asymmetry and Unpolarized $\pi^+\pi^-$ Cross Section in pp Collisions at $\sqrt{s} = 200$ GeV at STAR

Babu Pokhrel (For the STAR Collaboration) 03/30/2023

Office of

Science

Proton Structure

- Proton structure studied in terms of parton distribution functions (PDFs).
- Leading order PDFs:

Unpolarized:
$$f(x) \approx \bigcirc \longrightarrow Z$$

Helicity:
$$g(x) \approx 0$$

Transversity:
$$h_1(x) \approx 0$$

 \overrightarrow{P} = Nucleon polarization

 \vec{p} = Nucleon momentum

 \vec{s} = Quark polarization

z = Proton's momentum axis

Proton Structure

• Proton structure studied in terms of parton distribution functions (PDFs).

• Leading order PDFs:

Unpolarized: $f(x) \approx \bigcirc \longrightarrow Z$

Helicity: $g(x) \approx 0$

Transversity: $h_1(x) \approx 0$

Eur. Phys. J. C (2015) 75:580

• Well constrained by the SIDIS data.

 \overrightarrow{P} = Nucleon polarization

 \vec{p} = Nucleon momentum

 \vec{s} = Quark polarization

z = Proton's momentum axis

 \mathbf{x}

Proton Structure

• Proton structure studied in terms of parton distribution functions (PDFs).

• Leading order PDFs:

Unpolarized: $f(x) \approx 0 \Rightarrow z$

Helicity: $g(x) \approx \left(\begin{array}{c} & & \\ & \\ & \\ \end{array} \right) = \left(\begin{array}{c} & \\ & \\ \end{array} \right) > z$

Transversity: $h_1(x) \approx 0$

• Evidence of non-zero gluon polarization from the STAR data.

 \overrightarrow{P} = Nucleon polarization \overrightarrow{p} = Nucleon momentum \overrightarrow{s} = Quark polarization z = Proton's momentum axis

NNPDF, Nucl. Phys. B887(2014)276-308

Proton Structure

• Proton structure studied in terms of parton distribution functions (PDFs).

• Leading order PDFs:

Unpolarized:
$$f(x) \approx 0 \Rightarrow z$$

Helicity:
$$g(x) \approx 0$$

- $h_1(x)$ is least known, as it is not easily accessible in the physical process.
- $h_1(x)$ has gained a lot of attention lately, as it provides access to the **nucleon tensor charge** an important nucleon property.

 \overrightarrow{P} = Nucleon polarization \overrightarrow{p} = Nucleon momentum \overrightarrow{s} = Quark polarization

z = Proton's momentum axis

JAM Collab., Phys.Rev.D 106 (2022) 3, 034014

Transversity $(h_1^q(x))$

- Helicity flipped amplitude.
- Chiral-odd; conservation of chirality requires another chiral-odd counterpart to be appeared in the physical process.
- Measurement is not possible in inclusive DIS.

Transversity $(h_1^q(x))$

- Helicity flipped amplitude.
- Chiral-odd; conservation of chirality requires another chiral-odd counterpart to be appeared in the physical process.
- Measurement is not possible in inclusive DIS.

Proton-proton (pp) collisions provide multiple opportunities for the $h_1^q(x)$ measurement.

• Identified hadron inside jet (Collins Channel)

$$p^{\uparrow} + p \rightarrow jet + h + X \sim h_1^q(x)H_1^{\perp}(z, j_T)$$

- $h_1^q(x)$ coupled with the Collins FF, H_1^{\perp} .
- j_T = pion momentum transverse to the jet axis.

• Exclusively produced dihadron (Dihadron Channel)

$$p^{\uparrow} + p \rightarrow h^{+}h^{-} + X \sim h_1^q(x)H_1^{\triangleleft}(z, M)$$

- $h_1^q(x)$ coupled with the interference FF (IFF), H_1^{\triangleleft} .

$$-z = E^{h^+h^-}/E^{quark}$$
, $M = h^+h^-$ invariant mass

Observed azimuthal asymmetry due to the quark transverse polarization:

$$A_{UT}^{sin(\phi_S - \phi_H)} \sim h_1^q(x) H_1^{\perp}(z, j_T)$$

$$A_{UT}^{sin(\phi_S - \phi_R)} \sim h_1^q(x) H_1^{\triangleleft}(z, M)$$

- Identified hadron-in-jet
- TMD formalism

- No jet reconstruction required
- Collinear approach

Observables for $h_1^q(x)$ via Dihadron Channel in pp

Reaction Channel: $p^{\uparrow} + p \rightarrow \pi^{+}\pi^{-} + X$

$$\vec{p}_h = \vec{p}_{h,1} + \vec{p}_{h,2}, \ \overrightarrow{R} = \frac{1}{2}(\vec{p}_{h,1} - \vec{p}_{h,2}),$$
 Spin transfer $via \sim \vec{s}_a \cdot (\overrightarrow{R} \times \vec{p}_h)$

Quark polarization favors $\pi^+\pi^-$ production to one direction in azimuth (ϕ_{RS}) resulting in azimuthal correlation asymmetry, $A_{UT}^{sin(\phi_{RS})}$.

Observables for $h_1^q(x)$ via Dihadron Channel in pp

Reaction Channel:
$$p^{\uparrow} + p \rightarrow \pi^{+}\pi^{-} + X$$

$$\vec{p}_h = \vec{p}_{h,1} + \vec{p}_{h,2}, \ \overrightarrow{R} = \frac{1}{2}(\vec{p}_{h,1} - \vec{p}_{h,2}),$$
 Spin transfer $via \sim \vec{s}_a \cdot (\overrightarrow{R} \times \vec{p}_h)$

Quark polarization favors $\pi^+\pi^-$ production to one direction in azimuth (ϕ_{RS}) resulting in azimuthal correlation asymmetry, $A_{UT}^{sin(\phi_{RS})}$.

$\pi^+\pi^-$ Correlation Asymmetry:

$$A_{UT}^{sin(\phi_{RS})} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_{1}^{i/p_{a}}(x_{a}) f_{1}^{j/p_{b}}(x_{b}) H_{1}^{\triangleleft h_{1}h_{2}/k}(z, M_{h})}{\sum_{i,j,k} f_{1}^{i/p_{a}}(x_{a}) f_{1}^{j/p_{b}}(x_{b}) D_{1}^{h_{1}h_{2}/k}(z, M_{h})}$$

- $A_{UT}^{sin(\phi_{RS})}$ is sensitive to the product $h_1(x)H_1^{\triangleleft}(z,M)$.
- STAR observed significant $A_{UT}^{sin(\phi_{RS})}$ signal, enhanced around the ρ -mass (M_{inv} ~ 0.8 GeV/c²) expected due to the interference of hadrons produced via different channel.

Observables for $h_1^q(x)$ via Dihadron Channel in pp

Reaction Channel: $p^{\uparrow} + p \rightarrow \pi^{+}\pi^{-} + X$

$$\vec{p}_h = \vec{p}_{h,1} + \vec{p}_{h,2}, \ \overrightarrow{R} = \frac{1}{2}(\vec{p}_{h,1} - \vec{p}_{h,2}),$$
 Spin transfer $via \sim \vec{s}_a \cdot (\overrightarrow{R} \times \vec{p}_h)$

Quark polarization favors $\pi^+\pi^-$ production to one direction in azimuth (ϕ_{RS}) resulting in azimuthal correlation asymmetry, $A_{IJT}^{sin(\phi_{RS})}$.

$\pi^+\pi^-$ Correlation Asymmetry:

$$A_{UT}^{sin(\phi_{RS})} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\triangleleft h_1 h_2 / k}(z, M_h)}{\sum_{i,j,k} f_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) D_1^{h_1 h_2 / k}(z, M_h)} - \text{Unpolarized } \pi^+ \pi^- \text{ cross section, } \sigma^{\pi^+ \pi^-}, \text{ give access to } D_1^{\pi^+ \pi^-} \text{ in } pp.$$

-spin averaged FF, D_1 .

- $A_{UT}^{sin(\phi_{RS})}$ is sensitive to the product $h_1(x)H_1^{\triangleleft}(z,M)$.
- STAR observed significant $A_{IJT}^{sin(\phi_{RS})}$ signal, enhanced around the ρ -mass (M_{inv} ~ 0.8 GeV/c²) - expected due to the interference of hadrons produced via different channel.
- Significant impact on the $h_1(x)$ from STAR data at 200 GeV in the valence region (0.1 < x < 0.3).

• Event Selection

- This dataset provides the most precise A_{UT} at $\sqrt{s} = 200$ GeV to date.

- Triggers : JP1, JP2

- Pion selection: $|\eta| < 1$, $1.5 < p_T < 15 \text{ GeV/c}$, $-1 < n\sigma_{\pi} < 2$

- All possible pion pairs of opposite charge.

- Fix charge ordering in a pair: $\vec{p}_{h,1} = \pi^+$, $\vec{p}_{h,2} = \pi^-$

 $-\pi^{+}\pi^{-} \text{ selection cuts:}$ cone < 0.7, $|\eta^{\pi^{+}\pi^{-}}| < 1$, $1 < p_{T}^{\pi^{+}\pi^{-}} < 15 \text{ GeV/c}$, $0.27 < M_{inv} < 4 \text{ GeV/c}^{2}$

• Cross-Ratio Method:

$$A_{UT}sin(\phi_{RS}) = \frac{1}{P} \frac{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS} + \pi)} - \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS} + \pi)}}{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS} + \pi)} + \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS} + \pi)}}$$

 $N^{\uparrow(\downarrow)} \to \text{Number of } \pi^+\pi^- \text{ in respective } \phi_{RS} \text{ bin when the}$ polarization is Up(\(\frac{\gamma}{\gamma}\)) (Down (\(\psi\))). P is average beam polarization.

• Free from detector effects and associated uncertainties.

Aut vs M_{inv}: Aut is enhanced around $M_{inv}^{\pi^+\pi^-} \sim 0.8$, consistent with the previous measurement.

- Mean x and z as a function of $\eta^{\pi^+\pi^-}$ from simulation.
- $|\eta^{\pi^+\pi^-}| < 1$.
- 0.1 < x < 0.22, $z \sim 0.46$

- Significant $A_{\rm UT}$ in the forward region, where $h_1(x)$ is expected to be sizeable.
- Significant improvement in the statistical precision than previous STAR measurements.

Aut vs M_{inv} in $p_T^{\pi^+\pi^-}$ bins:

- 2D binning, A_{UT} as a function of M_{inv} in 5 p_T bins.
- Higher A_{UT} in the higher p_T bin, where higher x is probed.
- Growing prominence of the resonance peak around $M_{inv} \sim 0.8~GeV/c^2$ with increasing p_T .
- Small backward asymmetry, where lower *x* is probed.

- Significant $A_{\rm UT}$ in the forward region, where $h_1(x)$ is expected to be sizeable.
- Significant improvement in the statistical precision than previous STAR measurements.

Aut vs $p_T^{\pi^+\pi^-}$ in M_{inv} bins:

- 2D binning, A_{UT} as a function of $p_T^{\pi^+\pi^-}$ in 5 M_{inv} bins.
- A_{UT} increases with the p_T in the forward region, where higher x is probed.
- A_{UT} signal is larger when $M_{inv} \sim 0.8$ GeV/c² which is due to the resonance effect.
- Small backward asymmetry.

Aut vs M_{inv} in $p_T^{\pi^+\pi^-}$ bins:

- 2D binning, A_{UT} as a function of M_{inv} in 5 p_T bins.
- Higher A_{UT} in the higher p_T bin, where higher x is probed.
- Growing prominence of the resonance peak around $M_{inv} \sim 0.8~GeV/c^2$ with increasing p_T .
- Small backward asymmetry, where lower *x* is probed.

- Significant $A_{\rm UT}$ in the forward region, where $h_1(x)$ is expected to be sizeable.
- Significant improvement in the statistical precision than previous STAR measurements.

Unpolarized $\pi^+\pi^-$ Cross Section Measurement

$$p + p \to \pi^{+}\pi^{-} + X$$
 at $\sqrt{s} = 200$ GeV from run 2012.

Polarization integrated \approx Unpolarized

- Lower trigger threshold than 2015 dataset, and thus better for cross-section measurement.
- Inclusive $\pi^+\pi^-$ differential cross section:
 - As a function of invariant mass, $M_{inv}^{\pi^+\pi^-}$, in $|\eta|$ <1.
 - Much needed for the $D_1^{h_1h_2}$ extraction.
 - Access to $D_1^{h_1h_2/g}$.
- We will release preliminary result very soon, STAY TUNED.

Summary

- Azimuthal correlation asymmetries, which are sensitive to transversity, have been measured at STAR.
 - The statistical precision of the new 2015 results is significantly improved compared to previous STAR measurements.
 - We expect to significantly reduce the systematic uncertainty from the PID by using the Time-of-Flight detector in the final result.
- Preliminary result on the unpolarized dipion cross-section will be released VERY SOON using the STAR Run 12 data.
 - Differential cross section as a function of $M_{inv}^{\pi^+\pi^-}$ in $|\eta|<1$.
 - Constrain unpolarized FF, D_1 .
- These measurements will provide a basis for the transversity extraction with better precision.
- These results can be used to test the universality between SIDIS, e^+e^- , and pp, and further constrain global fits of transversity, especially in the high x (0.1<x<0.3) region.

