Transverse Single Spin Asymmetry of Electromagnetic Jets for Inclusive and Single Diffractive Process at Forward Rapidity in $p^{\uparrow}+p$ Collisions at $\sqrt{s} = 200$ GeV at STAR

Xilin Liang, for the STAR Collaboration

University of California, Riverside, CA, USA

Abstract

In recent decades, there have been numerous efforts to unravel the origin of the unexpectedly significant transverse single spin asymmetry (A_N) observed in inclusive hadron productions at forward rapidities in $p^{\uparrow}+p$ collisions at various center-of-mass energies (\sqrt{s}) . Several theories have been proposed to explain this phenomenon, including the twist-3 contributions within the collinear factorization framework, the transverse-momentumdependent contributions from the initial-state quark and gluon (Sivers functions), and/or final-state Collins fragmentation functions. However, there are indications that diffractive processes might also play a role in the observed significant A_N , based on the previous analyses of A_N for forward π^0 and electromagnetic jets (EM-jets) in $p^{\uparrow}+p$ collisions at STAR [1].

The STAR experiment provides an ideal opportunity to investigate the A_N in single diffractive processes at forward rapidity using the Forward Meson Spectrometer and Roman Pot detectors. This talk will present the preliminary findings on A_N for both inclusive and single diffractive EMjets at forward rapidity (2.6 < η < 4.2) in $p^{\uparrow}+p$ collisions at $\sqrt{s} = 200$ GeV at STAR. The discussion will include a multi-dimensional analysis of A_N for EM-jets in inclusive processes, with a focus on presenting the first preliminary results for A_N in single diffractive processes. Additionally, there will be a discussion on the contribution of A_N from single diffractive processes to the overall inclusive processes.

References

1

2

3

5

6

7

8

9

10 11

12 13

14

15

16

17

18

19

20

21

22

[1] (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)