The XXXI International Workshop on Deep Inelastic Scattering and Related Subjects (DIS2024)

Probing gluon and strange quark helicity distribution in the proton at STAR

Yi Yu (于毅), for the STAR Collaboration Shandong University

Apr 8–12, 2024 Maison MINATEC, Grenoble, FRANCE

Outline

- Motivation
- Introduction to RHIC-STAR
- Longitudinal double spin asymmetry A_{LL} for π^{\pm} -tagged jets
- Longitudinal double spin asymmetry A_{LL} for Λ , $\overline{\Lambda}$ and K_{S}^{0}
- Longitudinal spin transfer D_{II} of Λ and $\overline{\Lambda}$
- Summary

Constraining gluon polarization with π^{\pm} -tagged jet A_{IL}

$A_{LL}^{\pi^{\pm}} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Sigma \Delta f_i \otimes \Delta f_j \otimes \Delta \hat{\sigma} \otimes D_k^{\pi^{\pm}}}{\Sigma f_i \otimes f_j \otimes \hat{\sigma} \otimes D_k^{\pi^{\pm}}}$

• $\Delta u > 0$ and $\Delta d < 0$

• u-g and d-g scatterings are sensitive to the sign of Δg *u* quark favors π^+ , *d* quark favors π^-

• q-g scattering is the dominated process at RHIC energy

$$Ag > 0 \to A_{LL}^{\pi^+} > A_{LL}^{\pi^-}$$

 $g < 0 \to A_{LL}^{\pi^+} < A_{LL}^{\pi^-}$

Project g strange quark helicity distribution

[JAM], Phys. Rev. Lett. **119**, 132001 (2017).

Apr. 09, 2024

Yi Yu from Shandong University

poinstraints on the (anti-)strange quark helicity utions ($\Delta \bar{s}$) Δs

 $\Lambda, \overline{\Lambda} \text{ and } K_{S}^{0}$ $A_{LL}^{\Lambda} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\Sigma \Delta f_{i} \otimes \Delta f_{j} \otimes \Delta \hat{\sigma} \otimes D_{k}^{\Lambda}}{\Sigma f_{i} \otimes f_{j} \otimes \hat{\sigma} \otimes D_{k}^{\Lambda}}$

• Valence *s* or \overline{s} inside Λ , $\overline{\Lambda}$ and K_S^0

• *s* or \overline{s} prefers Λ , $\overline{\Lambda}$ and K_S^0 in the fragmentation process • A_{LL} of Λ , $\overline{\Lambda}$ and K_S^0 can shed light on the Δs and $\Delta \overline{s}$

Proving strange quark helicity distribution

[JAM], Phys. Rev. Lett. **119**, 132001 (2017).

• Longitudinal spin transfer D_{LL} of Λ and $\overline{\Lambda}$ in p+p collisions

Polarization of Λ can be measured via its weak decay

The Relativistic Heavy Ion Collider

used in this a

- The first and only polarized p+p collider in the world
- Collides both longitudinally and transversely polarized proton beams at $\sqrt{s} = 200 \,\text{GeV}$ and 500/510 GeV

Longitudinally polarized p + p collision samples taken at STAR

nalysis	Year	\sqrt{s} (GeV)	$\int L(\mathrm{pb}^{-1})$	P _{beam}
	2009	200	19	57% / 57%
	2015	200	52	<mark>52% /</mark> 56%
	2012	510	82	50% / 53%
	2013	510	300	51% / 52%

Apr. 09, 2024

Yi Yu from Shandong University

The Solenoidal Tracker at RHIC

- Time Projection Chamber (TPC)
 - $|\eta| < 1.3$ and $0 \le \phi \le 2\pi$
 - Tracking and particle identification (PID)
- Time of Flight detector (TOF)
 - $|\eta| < 0.9$ and $0 \le \phi \le 2\pi$
 - Particle identification
- Electromagnetic Calorimeter (EMC)
 - Barrel EMC (BEMC): $|\eta| < 1.0$ and $0 \le \phi \le 2\pi$
 - Endcap EMC (EEMC): $1.086 < \eta < 2.0$ and $0 \le \phi \le 2\pi$
 - Reconstruction of photon, π^0 , jet ..., and serves as trigger detectors
- Vertex Position Detector (VPD)
 - $4.24 < |\eta| < 5.1$
 - Monitor the relative luminosities and determine the primary vertex

Part I: Longitudinal double spin asymmetry A_{LL} of π^{\pm} -tagged jets

- energy deposits in EMC
- - Anti- k_T algorithm, with R = 0.6

 - Jet p_T was corrected back to particle level
- Jets tagged with π^{\pm} with z > 0.2 or z > 0.3

Apr. 09, 2024

- Particle purity is estimated with multi-Gaussian fitting of the $n\sigma_{\pi}$ distribution
- 3 particle rich regions $(\pi^{\pm}, K^{\pm} + p(\bar{p}), e^{\pm})$

π^{\pm} PID • π^{\pm} are identified based on their energy loss inside the TPC $n\sigma(\pi) = \frac{1}{\sigma_{exp}} \ln\left(\frac{dE/dx_{obs}}{dE/dx_{\pi.cal}}\right)$

Yi Yu from Shandong University

15

- Indication of $A_{LL}^{\pi^+} > A_{LL}^{\pi^-}$
- NNPDFpol1.1 predicts $A_{LL}^{\pi^+} > A_{LL}^{\pi^-}$ with positive gluon helicity Δg
- The results are close to the predictions

Results of A_{II} **vs jet** p_T

Yi Yu from Shandong University

- JAM+PYTHIA predicts different trends of A_{TT}^{\pm}

Results of A_{IL} **vs jet** p_T

• The measurements are not consistent with the JAM+PYTHIA prediction with $\Delta g < 0$

Part II: Longitudinal double spin asymmetry A_{LL} of Λ , $\overline{\Lambda}$ and K_S^0

Apr. 09, 2024

Yi Yu from Shandong University

A and K_{S}^{0} Selection & Jet Reconstruction

- Λ and K_S^0 selection
 - $\land (\overline{\Lambda}) \to p(\overline{p}) + \pi^{-}(\pi^{+}), K_{S}^{0} \to \pi^{+} + \pi^{-}$
 - $p(\bar{p})$ and π^{\pm} tracks were measured with the TPC
 - Sets of topological cuts were applied to reduce background
 - Residual background fraction r was estimated with side-band method
- Jet reconstruction
 - Jet reconstructed with anti- k_T algorithm with R = 0.6
 - Λ and K_S^0 candidate as input for jet reconstruction
 - In-jet Λ and K_S^0 are used set to make sure they are originate from the hard scattering 20000

15000

10000

1.08

1.09

1.1

Yi Yu from Shandong University

mass (GeV/ c^2)

A_{II} vs p_T for $\Lambda, \overline{\Lambda}$ and K_S^0

- First measurement A_{LL} vs p_T for Λ , $\overline{\Lambda}$ and K_S^0 in polarized p+p collisions
- The results are independent of particle p_T
- The results are consistent with zero
- Indication of small helicity distributions of s and \bar{s}

$\Lambda, \overline{\Lambda}$ and K_{S}^{0} tagged jet A_{LL}

- A subset of inclusive jets
- No jet p_T dependence
- Results are consistent with zero
- Provide constraints on strange quark helicity distribution

Part III: Longitudinal spin transfer D_{LL} of Λ and $\overline{\Lambda}$

Yi Yu from Shandong University

D_{II} in p+p collision

Definition

$$D_{LL}^{\Lambda} \equiv \frac{\mathrm{d}\sigma^{p^+ p \to \Lambda^+ X} - \mathrm{d}\sigma^{p^+ p \to \Lambda^- X}}{\mathrm{d}\sigma^{p^+ p \to \Lambda^+ X} + \mathrm{d}\sigma^{p^+ p \to \Lambda^- X}} = \frac{\mathrm{d}\Delta\sigma}{\mathrm{d}\sigma}$$

$$d\Delta\sigma \propto \Delta f_a(x_a) f_b(x_b) \Delta \sigma^{ab \to cd} \Delta D^{\Lambda}(z)$$

helicity	pQCD	longitudinally
distribution	calculable	polarized FFs

- D_{LL} can shed light on both polarized fragmentation functions (FFs) and the helicity distributions of $s(\bar{s})$
- D_{LL} vs z can provide direct probe to the polarized FFs

Prediction of D_{LL} **at RHIC energy**

scenario 3: u, d and s quarks have the same contribution to the polarized Λ

• D_{LL} is measured with the asymmetry of $\Lambda(\Lambda)$ yields as a function of $\cos \theta^*$

$$D_{LL} = \frac{1}{\alpha P_{beam} \langle \cos \theta^* \rangle} \frac{N^+ - RN^-}{N^+ + RN^-}$$
 Acceptance canceled

firstly used in STAR, Phys. Rev. D 80, 111102 (2009).

Background subtraction
$$D_{LL} = \frac{D_{LL}^{raw} - rD_{LL}^{bkg}}{1 - r}$$

- $N^{+(-)}$: the Λ yields with positive (negative) beam helicity
- ► *R*: relative luminosity measured by the VPD
- α : decay parameter of Λ , $\alpha_{\Lambda} = 0.732$, $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}}$
- P_{heam} : the beam polarization

Yi Yu from Shandong University

0.5

 $0 < \eta_{iet} < 1, \ 0.5 < z < 0.7$

 D_{TT}^{raw} : 0.010±0.010, χ^2/ndf : 10.7/9

 D_{TT}^{raw} : -0.003±0.008, χ^2/ndf : 7.7/9

 $0 < \eta_{\Lambda(\overline{\Lambda})} < 1.2, \ 3 < p_{T,\Lambda(\overline{\Lambda})} < 4 \text{ GeV}/c$

0.5

- Statistically limited.
- In agreement with models

Previous D_{TL} **vs** p_T results with STAR 2009 data

• Theoretical models, when fit to data, provide constraints to (anti)strange quark polarization

New results of D_{II} vs p_T

[STAR], Phys. Rev. D **109**, 012004 (2024).

- Twice statistics larger as STAR 2009 data
- Most precise measurements up to date.
- Consistent results between Λ and $\overline{\Lambda}$
- Two year's results are consistent
- Results are consistent with LM calculation
- Strong disfavor of the scenario 3 for the polarized FFs

Apr. 09, 2024

Model predictions:

X.N. Liu, B.Q. Ma. Eur. Phys. J. C 10 (2019). D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 81, 530 (1998).

First measurement of D_{II} vs z

Model predictions: Z.-B. Kang, K. Lee, and F. Zhao, Physics Letters B 809, 135756 (2020).

Apr. 09, 2024

- The results directly probe the polarized fragmentation functions
- Results are comparable to model predictions within uncertainties
- Indication of small helicity distributions of (anti-) strange quark and/or small polarized fragmentation functions

$$\mathrm{d}\Delta_T \sigma \propto \delta f_a(x_a) f_b(x_b) \delta \sigma_T^{ab \to cd} \Delta_T D_c^{\Lambda}(z)$$

Summary

- π^{\pm} -tagged jet A_{LL} in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ at STAR
 - The results support positive Δg
 - A_{LL} is consistent with the prediction with NNPDFpol1.1 ($\Delta g > 0$)
 - A_{LL} disfavors the prediction of JAM $\Delta g < 0$
- $\Lambda, \overline{\Lambda}$ and $K^0_S A_{LL}$ and D_{LL}
 - First measurements of A_{LL} in polarized p+p collisions at $\sqrt{s} = 200 \,\text{GeV}$
 - Indication of small strange quark and anti-quark helicity distribution
 - D_{LL} disfavors the extreme scenario about the polarized FFs
 - First measurement of D_{LL} vs z provides direct access to the polarized FFs
- Larger data samples of p+p collisions at 510 GeV taken in 2012 and 2013 will improve the precision and extend to lower *x* region

INPDFpol1.1 ($\Delta g > 0$)

Apr. 09, 2024

Backup

Yi Yu from Shandong University

Impact of the π^{\pm} tagging

Apr. 09, 2024

 π^+ -tagged jets with z > 0.3 2.5_{f} → $g + u \rightarrow g + u$ $+g \rightarrow g + g$ $\bullet f + u \rightarrow f + u$ 1.5 0.5 $\frac{40 \quad 50}{\text{jet } \text{p}_{\text{T}} (\text{GeV}/c)}$ 20 30 10 π -tagged jets with z > 0.3 2.5 $g + d \rightarrow g + d$ $f + d \rightarrow f + d$ 1.5 0.5 $\begin{array}{c} 40 \quad 50 \\ \text{jet } p_{T} \text{ (GeV/c)} \end{array}$ 20 30 10

Yi Yu from Shandong University

