Recent heavy-flavor measurements from STAR

Veronika Prozorova (for the STAR Collaboration)

Czech Technical University in Prague

The 31st International Workshop on Deep Inelastic Scattering and Related Subjects April 8 - 12, 2024, Grenoble, France Supported in part by

Office of Science

Outlook

- STAR detector
- Introduction

• Recent open heavy-flavor results

• Recent quarkonia results

• Summary

The Solenoidal Tracker At RHIC (STAR)

- TPC tracking and PID (dE/dx, p) Acceptance: |η| < 1
- **BEMC** high p_T electron identification and triggering Acceptance: $|\eta| < 1$

dE/dx (keV/cm

• TOF – PID (1/ β) Acceptance: $|\eta| < 1$

0.5

Au + Au 200 GeV

Momentum (GeV/c)

• MTD – muon identification and triggering Acceptance: $|\eta| < 0.5$

• BBC & VPD – minimum bias trigger Acceptance: $3.9 < |\eta| < 5 - BBC$ $|\eta| < 1 - VPD$

Introduction

Quark-Gluon Plasma (QGP) – strongly interacting matter at extreme temperature and/or density.

Heavy Ion Collisions are used to explore the phase diagram and QGP properties.

Introduction

Quark-Gluon Plasma (QGP) – strongly interacting matter at extreme temperature and/or density.

Heavy Ion Collisions are used to explore the phase diagram and QGP properties.

- Heavy quarks: $m_Q >> \wedge_{QCD}$, $m_Q >> \top_{QGP}$
- Dominantly produced in initial hard scatterings
- Participate in the whole medium evolution
- Production cross-sections can be calculated in perturbative QCD

Ideal probes of QGP

Introduction

Quark-Gluon Plasma (QGP) – strongly interacting matter at extreme temperature and/or density.

Heavy Ion Collisions are used to explore the phase diagram and QGP properties.

- Heavy quarks: $m_Q >> \wedge_{QCD}$, $m_Q >> \top_{QGP}$
- Dominantly produced in initial hard scatterings
- Participate in the whole medium evolution
- Production cross-sections can be calculated in perturbative QCD

Heavy-flavor (HF) – hadrons carrying charm or bottom quarks \rightarrow Open heavy-flavor – carry one c or b quark

EXAMPLE • Calcin Contended A series $b\overline{b}$ or $b\overline{b}$

April 9, 2024

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

$$E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}} = \frac{1}{2}\frac{1}{L}\frac{N_{NPE}}{2\pi p_{T}\Delta p_{T}\Delta y} - E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}}(\mathrm{LVMDE \, or \, HDE})$$

- Good agreement among the results
- Precision improvement at $p_{\rm T}$ > 6 GeV/c

Inclusive e^{\pm} from open HF hadron decays in p+p @ 200 GeV

 $E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}} = \frac{1}{2}\frac{1}{L}\frac{N_{NPE}}{2\pi p_{T}\Delta p_{T}\Delta y} - E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}p^{3}} (\mathrm{LVMDE \, or \, HDE})$

April 9, 2024

• Good agreement among the results

• Precision improvement at p_{T} > 6 GeV/c

• Consistency with the upper limit of the FONLL uncertainty

- Further constraints on theoretical calculations
- Precise reference for *R*_{AA} measurements for heavy-flavor decayed electrons

e^{\pm} from open HF hadron decays in Au+Au @ 200 GeV

PHENIX: V, Phys. Rev. C 84 (2011) 044905 STAR: Phys. Rev. Lett. 98 (2007) 192301.

Suppression by factor of 2 in central collisions within $3.5 < p_T < 8$ GeV/c

Significant energy loss of HQ in QGP

e[±] from open HF hadron decays in Au+Au @ 200 GeV

R April 9. 2024

Duke and PHSD models

Elliptic flow of HFE in Au+Au @ 27 & 54.4 GeV

 e^{HF} (HFE) – heavy-flavor electrons

- 54.4 GeV : significant v_2 of e^{HF}
 - Strong interaction of c quarks with QGP
 - Hints of close to thermal equilibrium with the medium

- 27 GeV : v_2 is consistent with 0 within uncertainties
 - Hints of deviation of *c* quarks from local thermal equilibrium ?

D⁰ R_{AA} in isobar collisions @ 200 GeV

Moderate size collision system, between Au+Au and Cu+Cu

Good for studying hot nuclear medium effects dependence on colliding system size

R_{AA} in isobar collisions @ 200 GeV

 $\binom{96}{40}Z\gamma$

٠

۲

R_{AA} in isobar collisions @ 200 GeV

system size

۲

Quarkonia

- Observation of quarkonium suppression in HIC = strong evidence for QGP formation, important probes of the medium T
- Hot nuclear matter effects:
 - Dissociation due to color screening and regeneration
- Sequential quarkonium suppression due to different binding energies (quarkonium state size > $\lambda_{\rm D} \sim 1/T_{\rm c}$)

- Cold Nuclear Matter (CNM) effects:
 - Modification of PDFs, nuclear absorption, coherent energy loss, co-mover absorption, ... - study in p+A collisions

J/ ψ with jet activity in p+p collisions @200 GeV^{STAR Preliminary}

Constraining J/ψ production mechanisms: comparing color singlet vs color octet states, which should result in differing jet activity. Lansberg, Physics Reports, 889, 1 (2020)

- Dependence of J/ψ production cross section on jet activity for charged jets
- Larger fraction of J/ ψ produced associated with jet in Pythia than in data

CNM effects on J/ψ in p+Au @ 200 GeV

- Significant CNM effects at low p_T
- Consistency with the model calculations within uncertainties
- Consistency with unity above 3 GeV/c \longrightarrow Little CNM effects on J/ψ production

 $\frac{\mathrm{d}p_T \mathrm{d}y}{p+Au}$ $R_{pAu} = \frac{1}{\langle T_{AA} \rangle} \times$

Au+Au: large suppression of J/ψ yield above 3 GeV/c due to hot medium effects

Collision energy and system size dependence of J/ ψ suppression

No collision system size dependence

No significant energy dependence within uncertainties up to 200 GeV

Interplay of dissociation, regeneration and cold nuclear matter effects

J/ψ elliptic flow in isobar collisions @ 200 GeV

STAR Preliminary

Why $J/\psi v_2$?

• $J/\psi v_2$ is consistent with 0 and with Au+Au results

Indication of small regeneration effects

• Uncertainty is dominated by statistical error

Y production in isobar collisions @ 200 GeV

STAR: Phys. Rept. 858 (2020) 1-117

April 9, 2024

No significant species dependence at the same <N_{part}>

ψ (2S) production in isobar collisions @ 200 GeV

• Ratio decreases towards central collisions

• Significantly lower than that in p+p and p+A collisions at p_T < 2 GeV/c

Summary

 ★ Recent heavy-flavor results from PHENIX : by Dan Richford at RHIC AUM '23
 ★ Recent J/ψ results measured with PHENIX: by Tamas Novak at Rencontres de Moriond QCD 2023

Heavy quarks are good tool for studying QGP properties

Open heavy-flavor

Significant energy loss of heavy quarks for different energies: 200 GeV, 54.4 GeV

and for different system sizes: Au+Au and Ru+Ru, Zr+Zr

Quarkonia

- Observation of sequential suppression in both charmonium and bottomonium states at RHIC
- Neither collision energy nor system size dependence of J/ψ suppression at similar $\langle N_{part} \rangle$

Thank you for your attention!

BACKUP

Sequential Y states suppression in Au+Au @ 200 GeV

- Suppression in all three centrality intervals
 - Hint of increasing suppression from 30-60% to 0-10%
- Upper limit of Y(3S) is estimated to be 0.17
- Suppression level of $\Upsilon(2S)$ (R_{AA} = 0.26) is between $\Upsilon(1S)$ and $\Upsilon(3S)$

Consistency with a sequential suppression pattern observed at LHC

Sequential Y states suppression in Au+Au @ 200 GeV

- **Υ(1S):** consistency between the STAR and CMS data within uncertainties
- Y(2S): hint of smaller suppression at RHIC energies in peripheral collisions
- No clear p_T dependence of the suppression for Υ(1S) and Υ(2S)
- Consistency between the model calculations and data within uncertainties

April 9, 2024

STAR: Phys. Rev. Lett. 130 (2023) 112301

Heavy-Flavor Electrons (HFE)

- Electrons from semi-leptonic decays of open heavy-flavor hadrons
- Relative contribution of ${\it D}$ and ${\it B}$ hadron decays depend on electron $p_{
 m T}$
- Semi-leptonic decays branching ratio (BR) > hadronic decays BR

Jean Clark

Decay processes of D⁰ meson

STAR Heavy-flavor program for Runs 23-25

- Run 23 + 25 Au+Au at 200 GeV: 20B MB and 40nb⁻¹ HT events projected
- Detector upgrades (EPD, ETOF, iTPC..)

• E.g. precise J/ ψ v_2 measurement at RHIC energies

April 9, 2024

EPD for event plane reconstruction —> less non-flow effect contribution

- Run 24 p+Au: higher statistics than in Run 15
- Potential enhancement at high p_T for the STAR results

- Broader momentum coverage at RHIC
- Enlarge acceptance : η coverage from 1.0 to 1.5

J/ψ suppression at forward rapidity in Au+Au @ 200 GeV

- Suppression due to hot nuclear matter effects
- $R_{AA}^{fwd} < R_{AA}^{mid}$, contrary to expectation

• Significant difference in $J/\psi R_{AA}$ due to J/ψ regeneration of from $c\overline{c}$ pairs at midrapidity?

PHENIX