

An overview of nucleon spin and 3D structure at STAR

Xiaoxuan Chu, on behalf of the STAR Collaboration Brookhaven National Laboratory April 8th – 12th, 2024 Grenoble, France

STAR Forward Upgrade: $2.5 < \eta < 4$

- RHIC: first and only (longitudinally and transversely) polarized *pp* collider, also capable of colliding *AA*.
- STAR: has been collecting data with its forward-upgraded detectors and will continue data collection until 2025.
- RHIC Run24: starts soon on April 15th, includes 19 weeks of 200 GeV trans. polarized pp and 6 weeks of AuAu.

The **physics goals** of Cold QCD program at STAR:

1. understand the decomposition of **proton spin**:

- (anti)quark helicity: $W A_L$; ΛD_{LL}
- gluon helicity: jet and dijet A_{LL} ; $\pi^0 A_{LL}$

Long. polarized program

Inner building blocks of a proton, quarks and gluons, and their possible orbital motion, contribute to proton spin.

$$S_p = \frac{1}{2} = \frac{1}{2}\Delta \boldsymbol{\Sigma} + \boldsymbol{\Delta}\boldsymbol{G} + L_q + L_g$$

The **physics goals** of Cold QCD program at STAR:

EIC White Paper

- 1. understand the decomposition of proton spin:
- (anti)quark helicity: $W A_L$; ΛD_{LL}
- gluon helicity: jet and dijet A_{LL} ; $\pi^{
 m o}\,A_{LL}$
- 2. explore the **multidimensional landscape in coordinate and momentum space** of nucleons and nuclei:
- initial and final state TMD^{*} effects
- single-spin asymmetry of weak boson
- single-spin asymmetry in forward region
- di-hadron interference fragmentation function

Tran. polarized program

3-denmentional image of the structure of a proton: k_{\perp} is the transverse momentum of a parton

*Transverse momentum dependent parton distribution function TMD: $f(x, k_{\perp}, Q^2)$

The **physics goals** of Cold QCD program at STAR:

Courtesy: BNL

- 1. understand the decomposition of proton Spin:
- (anti)quark helicity: $W A_L$; ΛD_{LL}
- gluon helicity: jet and dijet A_{LL} ; $\pi^0 A_{LL}$

2. explore the multidimensional landscape in coordinate and momentum space of nucleons and nuclei:

- initial and final state TMD^{*} effects
- single-spin asymmetry of weak boson
- single-spin asymmetry in forward region
- di-hadron interference fragmentation function

Tran. polarized program

3. study the collinear parton distributions

- high-*x* quark and low-*x* gluon distributions
- Λ polarization

Unpolarized program

Small x gluon dynamics

*Transverse momentum dependent parton distribution function TMD: $f(x, k_{\perp}, Q^2)$

Longitudinally polarized program at STAR

Proton beam spin direction
 Proton beam momentum direction

Measuring quark and gluon helicity at STAR

Measurements at RHIC use longitudinally polarized p+p data to extract:

• Polarized sea quark helicity distribution $\Delta oldsymbol{q}$

•
$$\Delta \overline{u} \text{ and } \Delta \overline{d} : \overrightarrow{p}p \to W + X, A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}, W^{+/-} \to \text{natural flavor separation}$$

• $\Delta s(\overline{s}): \Lambda(\overline{\Lambda}) \text{ production, } D_{LL} = \frac{\sigma_{p+p \to \Lambda^+ X} - \sigma_{p+p \to \Lambda^- X}}{\sigma_{p+p \to \Lambda^+ X} + \sigma_{p+p \to \Lambda^- X}}, \text{ sensitive to polarized fragmentation functions (FF) and } \Delta s(\overline{s})$

• Polarized gluon helicity distribution Δg : jet/dijet/hadron, $A_{LL} \propto \Delta f$, sensitive to Δg at RHIC energy

Xiaoxuan Chu

Sea quark helicity from STAR: $\Delta \overline{u}, \Delta \overline{d}$

Xiaoxuan Chu

 $\sigma_+ - \sigma_-$

 $\sigma_+ + \sigma_-$

 $A_L =$

Strange quark helicity: Δs

- Longitudinal spin transfer coefficient D_{LL} of Λ and $\overline{\Lambda}$ within jets constrains polarized fragmentation functions and $\Delta s(\overline{s})$
- Results show consistency between Λ and $\overline{\Lambda}$; data agree with various models within uncertainties
- 2015 data: most precise measurements to date with twice the statistics of the 2009 dataset STAR, PRD 98 (2018) 112009

 $\sigma_{p^+p\to\Lambda^-X}$

 $O_{p^{+}p \to \Lambda^{+}X}$

 $\sigma_{p^+p\to\Lambda^+X} + \sigma_{p^+p\to\Lambda^-X}$

 $D_{LL} =$

Gluon helicity Δg measurement at STAR $A_{LL} = \frac{1}{\sigma_{++}}$

- STAR inclusive jet A_{LL} using 2009 data provided first evidence of positive gluon polarization at 0.05 < x < 0.2
- STAR inclusive and dijets A_{LL} at 200 and 510 GeV using 2009 to 2015 data:
 - \circ $\,$ Consistent results from both energies
 - 200 GeV data constrain $\Delta g(x)$ for x > 0.05
 - Forward detection and higher collision energy at 510 GeV data push the sensitivity to lower $x \rightarrow 0.02$
- $\circ~$ STAR inclusive jets tagged with π^\pm carrying high z can provide further constraints on $\varDelta g(x)$

Transversely polarized program at STAR

p→ or p→

 p→ p→

 Proton beam momentum direction

How to extract Sivers function

• Transverse single-spin asymmetry (TSSA, A_N) in 200 GeV and 500/510 GeV pp collisions

Sivers function for W^{+/-} and Z⁰

Asymmetry for dijet opening angle

Spin-dependent dijet opening angle \rightarrow sensitive to the Sivers TMD

What's observed: the first non-zero Sivers effect

$$\langle k_T^u \rangle = 19.3 \pm 7.6 \pm 2.6 \frac{MeV}{c}, \langle k_T^d \rangle = -40.2 \pm 23.0 \pm 9.3 \frac{MeV}{c}, \langle k_T^{g+sea} \rangle = 5.2 \pm 9.3 \pm 3.8 \frac{MeV}{c}$$

with jet flavor tagged by jet charge $Q = \sum_{p>0.8 \ GeV/c} \frac{p^{trk}}{p^{jet}} \cdot q$.

e.g., Q > 0.25 means + tagging, u quark signal enhanced

What's next: x dependence probed by combining this result with 510/508 GeV data from 2017 and 2022, improved statistic with extended η coverage by STAR iTPC and Forward Upgrade for 2024 data-taking

STAR, PRD 103, 92009 (2021)

Asymmetry in the forward region

Xiaoxuan Chu

 A_N for EM jet

- Sizeable A_N asymmetries for forward π^0 observed: contributed from higher twist, Sivers, Collins (final state), and/or possibly from diffraction
- Very weak collision energy dependence of π^0/EM jet A_N
- Topological dependence of $\pi^0 A_N$: isolated $\pi^0 >$ non-isolated π^0
- γ multiplicity dependence of EM jet A_N : decreases with higher multiplicity
- Diffraction: single diffractive EM jet A_N is >2 σ from 0 when integrating over x_F
- Run2022 and 2024: improved statistic for various objects using Forward Upgrades

Transversity and Collins fragmentation functions

Quark polarization along the spin of a transversely polarized proton

- Observables: $A_{UT}^{\sin(\phi)}$ for hadrons
- Collins function is predicted to be universal

Collins asymmetry for π^{\pm} in jets

• New results show weak energy dependence and provide important constraints on the scale evolution for Collins asymmetry

0.25

0.3

0.2

n

0.05

0.1

0.15

Jet x_⊤ (2p_/√s)

Interference FF from di-hadron measurement

See Bernd Surrow's talk, <u>WG5</u>, Wed 3:10pm

- Spin dependent di-hadron correlations probe collinear quark transversity coupled to the interference fragmentation function (IFF) at higher Q² region compared to SIDIS
- The results can test the universality property of IFF from e^+e^- , SIDIS and p+p data
- Planning for precision measurement of IFF asymmetries for pion/kaon from 2022+2024 dataset

Where are we going?

STAR Forward Upgrade capabilities with jets and hadrons for transverse asymmetries:

- Study forward Sivers, Collins, and diffractive processes → charge-tagged jets, di-jets, hadronin-jets, and diffractive processes with rapidity gaps
- Before STAR: TMDs only came from fixed target e+p data with low Q²
- STAR's unique kinematics coverage with the Forward Upgrade: low to high *x* at moderate and high Q² → TMD evolution:
 - $x \text{ up to } \sim 0.5 \rightarrow \text{ sensitive to valence quark}$

Unpolarized program at STAR

W and Z⁰ cross section

Cross section ratio of W⁺/W⁻ constrains high x quark distributions $\overline{d}/\overline{u}$:

- Sensitive to the region 0.1 < x < 0.3 in STAR mid-• rapidity ($|\eta| < 1$) at Q ~ M_W
- Clean theoretical and experimental observable •

$$\sigma_{W^{+}} / \sigma_{W^{-}} \approx \frac{u(x_{1}) \, \bar{d}(x_{2}) + u(x_{2}) \, \bar{d}(x_{1})}{\bar{u}(x_{1}) \, d(x_{2}) + \bar{u}(x_{2}) \, d(x_{1})}$$
Xiaoxuan Chu

Differential Z⁰ cross section vs. p_T :

- Constrains on the energy scale dependence of TMDs
- Sensitive to the region 0.1 < x in STAR mid-rapidity $(|\eta| < 1)$ at $Q = M_Z \gg p_T$

Bertone et al., JHEP 06(2019)028 Bacchetta et al., JHEP 10(2022)127

Λ polarization

See Jan Vanek's talk, <u>WG5</u>, Tue 3:10pm

Access polarizing Fragmentation Functions(pFFs) by measuring transverse polarization of Λ -in-jet at STAR:

- cover a wide range of jet p_T for measurement of energy scale dependence
- test universality of pFFs with results from e^+e^- and SIDIS

$$\frac{dN}{d\cos\theta^*} \propto (1+\alpha P\cos\theta^*)$$

 θ^* : angle between proton and spin direction in Λ rest frame Xiaoxuan Chu

More investigation of Λ polarization from measuring spin correlation of two Λs :

- first experimental search
- consistent with 0 within uncertainty $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} \sim 1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*)$

 $\theta^*:$ angle between two protons in the rest frame of their mother Λs

Nonlinear gluon dynamics in QCD

- Run15: di- π^0 correlations at forward rapidities from low p_T to high $p_T \rightarrow$ probe gluon dynamics from low $x(Q^2)$ to high $x(Q^2)$
- **di**- h^{\pm} measurement is crucial with Run24 (pp) + possibly pAu in the last 2 years of RHIC Run, for lowest $p_T \rightarrow 0.2$ GeV/c where the strongest suppression is expected
- STAR data are essential to explore the universality of nonlinear effects along with the future EIC

Summary and outlook

High impact of STAR Cold QCD program:

Longitudinally polarized: insights into Δg ; $\Delta \bar{u} > \Delta \bar{d}$ and $\Delta s \sim 0$

Transversely polarized:

- Sivers asymmetry for W/Z boson ~ 0
- Nonzero Collins asymmetry for hadron-in-jet and IFF
- Investigation of large forward A_N, small contribution from diffraction

Unpolarized:

- W/Z boson cross section \rightarrow high x quark distribution/TMD
- Forward di- π^0 corr. \rightarrow nonlinear gluon dynamics
- Investigation of Λ polarization from various aspects

STAR will continue taking data with the Forward Upgrade through 2025: high-statistics tran. pol. pp data is coming soon!

- Understanding the origin of large forward A_N
- Testing TMD evolution and universality
- Constraining transversity at high x
- Understanding the nature of the initial state in nucleons and nuclei

Run period for STAR:

2024	19 weeks of pp	Transversely
(from Apr 15 th)	6 weeks of AuAu	polarized pp
2025	AuAu	

It's possible to take **pAu** in the last 2 years of RHIC Run!

Back up

STAR Forward Upgrade

STAR Forward Upgrade: $2.5 < \eta < 4$

Four new systems:

- Electromagnetic and Hadronic Calorimetry
- Tracking: Si detectors and small-strip Thin Gap Chambers (sTGC)

What we can measure:

- *h*^{+/-}, *e*^{+/-} (with good *e*/*h* discrimination)
- Photons, π^0
- Jets, *h* in jets
- Lambda's
- Drell-Yan and J/Ψ di-electrons
- Mid-forward and forward-forward correlations

Run period:

- STAR in parallel with sPHENIX:
 - $2024 \rightarrow 200 \text{ GeV}$ polarized p+p and Au+Au
 - $2025 \rightarrow 200 \text{ GeV} \text{Au+Au w/o p+Au}$

Xiaoxuan Chu

Dijet Sivers effects: kinematics

Observable for Probing the Sivers Effect in Dijet Event

The Sivers asymmetry can be probed via the signed opening angle ζ .

DNP2020 - Dijet Sivers - Huanzhao Liu

4

Complementarity and Universality

Where are we?

2023

The RHIC Cold QCD Program White Paper

contribution to the NSAC Long-Range Planning process

Authors for the RHIC SPIN Collaboration

Elke-Caroline Aschenauer¹, Kenneth Barish², Alexander Bazilevsky¹, Xiaoxuan Chu¹, James Drachenberg², Oleg Eyser¹, Rence Fatemi¹, Carl Gagliard², Sanghwa Park⁰, Vincent Schoefer¹, Raff Seidl⁷, Sotti Wissink², Qinghua Xu², and Maria Zurek¹⁰

¹Brookbaren National Lakoratory, Upton, New York 11973 ²University of Colloptina, Bicreinic, California 92521 ³Abilene Christian University, Ahlene, Texas 76699 ⁴University of Kentucky, Lecasopton, Kantucky (20056-0055 ⁵Texas AC81 University, College Station, Texas 77843 ⁶Mississippi State University, Biosessippi State, Mississippi State, Mississipi State, Mississippi State, Mississipi State, Mississippi State, M

"The RHIC Spin Collaboration consists of the spin working groups of the RHIC collaborations, many theorists and members of the BNL accelerator department.

arXiv:2302.00605

Where are we going?

Xiaoxuan Chu

DIS 2024

RHIC

EIC