

An overview of nucleon spin and 3D structure at STAR

Xiaoxuan Chu, on behalf of the STAR Collaboration
Brookhaven National Laboratory
April $8^{\text {th }}-12^{\text {th }}, 2024$
Grenoble, France

Brookhaven
National Laboratory

The Cold QCD Program at STAR

STAR Forward Upgrade: $2.5<\eta<4$

- RHIC: first and only (longitudinally and transversely) polarized pp collider, also capable of colliding $A A$.
- STAR: has been collecting data with its forward-upgraded detectors and will continue data collection until 2025.
- RHIC Run24: starts soon on April 15 ${ }^{\text {th }}$, includes 19 weeks of 200 GeV trans. polarized $p \boldsymbol{p}$ and 6 weeks of $A u A u$.

The Cold QCD Program at STAR

The physics goals of Cold QCD program at STAR:

1. understand the decomposition of proton spin:

- (anti)quark helicity: $W A_{L} ; \Lambda D_{L L}$
- gluon helicity: jet and dijet $A_{L L} ; \pi^{0} A_{L L}$

Long. polarized program

Inner building blocks of a proton, quarks and gluons, and their possible orbital motion, contribute to proton spin.
$S_{p}=\frac{1}{2}=\frac{1}{2} \Delta \boldsymbol{\Sigma}+\Delta \boldsymbol{G}+L_{q}+L_{g}$

The Cold QCD Program at STAR

The physics goals of Cold QCD program at STAR:

1. understand the decomposition of proton spin:

- (anti)quark helicity: $W A_{L} ; \Lambda D_{L L} \quad$ Long. polarized program

2. explore the multidimensional landscape in coordinate and momentum space of nucleons and nuclei:

- initial and final state TMD* effects
- single-spin asymmetry of weak boson
- single-spin asymmetry in forward region
- di-hadron interference fragmentation function

Tran. polarized program

EIC White Paper

3-denmentional image of the structure of a proton:
k_{\perp} is the transverse momentum of a parton
*Transverse momentum dependent parton distribution function TMD: $f\left(x, k_{\perp}, Q^{2}\right)$

The Cold QCD Program at STAR

The physics goals of Cold QCD program at STAR:

1. understand the decomposition of proton Spin:

- (anti)quark helicity: $W A_{L} ; \Lambda D_{L L} \quad$ Long. polarized program

2. explore the multidimensional landscape in coordinate and momentum space of nucleons and nuclei

- initial and final state TMD* effects
- single-spin asymmetry of weak boson
- single-spin asymmetry in forward region
- di-hadron interference fragmentation function

Tran. polarized program

Courtesy: BNL

Small x gluon dynamics

3. study the collinear parton distributions

- high- x quark and low- x gluon distributions
- Λ polarization

Unpolarized program

Longitudinally polarized program at STAR

$$
\mathrm{p} \rightarrow \text { or } \mathrm{p} \rightarrow
$$

Proton beam spin direction
Proton beam momentum direction

Measuring quark and gluon helicity at STAR

Proton Spin S:

Description of $A_{L L}$ measurement:

Proton beam momentum direction

Proton beam spin direction

$$
A_{L L}=\frac{\sigma_{++}-\sigma_{+-}}{\sigma_{++}+\sigma_{+-}}=\frac{\Sigma \Delta f_{a} \otimes \Delta f_{b} \otimes \hat{\sigma} a_{\hat{L} L} \otimes D}{\Sigma f_{a} \otimes f_{b} \otimes \hat{\sigma} \otimes D} \quad \text { Global fit } \Delta f\left(x, Q^{2}\right)
$$

Measurements at RHIC use longitudinally polarized $\mathbf{p + p}$ data to extract:

- Polarized sea quark helicity distribution $\Delta \boldsymbol{q}$
- $\Delta \overline{\boldsymbol{u}}$ and $\Delta \overline{\boldsymbol{d}}: \vec{p} p \rightarrow \mathrm{~W}+\mathrm{X}, A_{L}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}, \mathrm{W}^{+/-} \rightarrow$ natural flavor separation
- $\Delta \boldsymbol{s}(\overline{\boldsymbol{s}}): \Lambda(\bar{\Lambda})$ production, $D_{L L}=\frac{\sigma_{p^{+} p \rightarrow \Lambda^{+} X}^{+}-\sigma_{p^{+} p \rightarrow \Lambda^{-} X}}{\sigma_{p^{+} p \rightarrow \Lambda^{+} X}+\sigma_{p^{+} p \rightarrow \Lambda^{-} X}}$, sensitive to polarized fragmentation functions (FF) and $\Delta s(\bar{s})$
- Polarized gluon helicity distribution $\Delta \boldsymbol{g}$: jet/dijet/hadron, $A_{L L} \propto \Delta f$, sensitive to Δg at RHIC energy

Sea quark helicity from STAR: $\Delta \bar{u}, \Delta \bar{d}$

$$
A_{L}=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}
$$

STAR, PRD 99, 051102 (2019)

arXiv:2302.00605

- Measured parity-violating single-spin asymmetry of $W^{+(-)} \propto \Delta \bar{d}(\Delta \bar{u})$
- For the first time, we can conclude an asymmetry between \bar{u} and \bar{d} polarization: $\Delta \bar{u}-\Delta \bar{d}>0$ with STAR $2013 W^{+/-}$data

Strange quark helicity: Δs

$$
D_{L L}=\frac{\sigma_{p^{+} p \rightarrow \Lambda^{+} X}-\sigma_{p^{+} p \rightarrow \Lambda^{-} X}}{\sigma_{p^{+} p \rightarrow \Lambda^{+} X}+\sigma_{p^{+} p \rightarrow \Lambda^{-} X}}
$$

See Yi Yu's talk, WG5, next talk
Recently published by STAR STAR, PRD 109, 12004 (2024)

Theory curves: D. de Florian et al, PRL 81, 530 (1998)

- Longitudinal spin transfer coefficient $D_{L L}$ of Λ and $\bar{\Lambda}$ within jets constrains polarized fragmentation functions and $\Delta s(\bar{s})$
- Results show consistency between Λ and $\bar{\Lambda}$; data agree with various models within uncertainties
- 2015 data: most precise measurements to date with twice the statistics of the 2009 dataset STAR, PRD 98 (2018) 112009

Gluon helicity Δg measurement at STAR

STAR, PRD 105, 092011 (2022)

STAR, PRD 105, 092011 (2022)

See Yi Yu's talk, WG5, next talk

- STAR inclusive jet $A_{L L}$ using 2009 data provided first evidence of positive gluon polarization at $0.05<x<0.2$
- STAR inclusive and dijets $A_{\text {LL }}$ at 200 and 510 GeV using 2009 to 2015 data:
- Consistent results from both energies
- 200 GeV data constrain $\Delta g(x)$ for $x>0.05$
- Forward detection and higher collision energy at 510 GeV data push the sensitivity to lower $x \rightarrow 0.02$
- STAR inclusive jets tagged with $\pi^{ \pm}$carrying high z can provide further constraints on $\Delta g(x)$

Transversely polarized program at STAR

Proton beam spin direction
Proton beam momentum direction

How to extract Sivers function

- Transverse single-spin asymmetry (TSSA, A_{N}) in 200 GeV and $500 / 510 \mathrm{GeV} p p$ collisions
- Sensitive to one of the polarized TMDs, Sivers Function

Initial state TMD

$$
A_{N} \cdot \cos (\phi)=\frac{1}{\langle P\rangle} \cdot \frac{\sqrt{N_{\uparrow}(\phi) N_{\downarrow}(\phi+\pi)}-\sqrt{N_{\uparrow}(\phi+\pi) N_{\downarrow}(\phi)}}{\sqrt{N_{\uparrow}(\phi) N_{\downarrow}(\phi+\pi)}+\sqrt{N_{\uparrow}(\phi+\pi) N_{\downarrow}(\phi)}}
$$

- A_{N} : left-right asymmetry in the final state

Sivers function for $\mathbf{W}^{+/-}$and Z^{0}

Final-state interaction

DY, w, $\mathbf{z o}^{0}$

Initial-state interaction

Sivers effect is NOT universal; it is a process-dependent effect:
\rightarrow Sivers $_{\text {DIS }}=-$ Sivers $_{\text {Dr }}$ or Sivers $\left.{ }_{w, z o}\right)$

- Mid-rapidity $\mathrm{W}^{+/-}$and $\mathrm{Z}^{0} \mathrm{~A}_{N}$: statistics much improved with run 2017 compared to run $2011\left(25 \mathrm{pb}^{-1}\right)$
- Additional $400 \mathrm{pb}^{-1}$ data from Run 2022 with Forward Upgrade and η coverage extended by STAR iTPC

Asymmetry for dijet opening angle

Spin-dependent dijet opening angle
\rightarrow sensitive to the Sivers TMD

STAR, arXiv:2305.10359

- What's observed: the first non-zero Sivers effect

$$
\begin{aligned}
&\left\langle k_{T}^{u}\right\rangle=19.3 \pm 7.6 \pm 2.6 \frac{\mathrm{MeV}}{c},\left\langle k_{T}^{d}\right\rangle=-40.2 \pm 23.0 \pm 9.3 \frac{\mathrm{MeV}}{c},\left\langle k_{T}^{g+\text { sea }}\right\rangle=5.2 \pm 9.3 \pm 3.8 \frac{\mathrm{MeV}}{c} \\
& \text { with jet flavor tagged by jet charge } Q=\sum_{p>0.8 \mathrm{GeV} / c} \frac{p^{\text {trk }}}{p^{j e t}} \cdot q . \\
& \text { e.g., } Q>0.25 \text { means }+ \text { tagging, } u \text { quark signal enhanced }
\end{aligned}
$$

- What's next: x dependence probed by combining this result with $510 / 508 \mathrm{GeV}$ data from 2017 and 2022, improved statistic with extended η coverage by STAR iTPC and Forward Upgrade for 2024 data-taking

Asymmetry in the forward region

Theory curve: J. Cammarota et al., PRD 102, 054002 (2020)

- Sizeable A_{N} asymmetries for forward π^{0} observed: contributed from higher twist, Sivers, Collins (final state), and/or possibly from diffraction
- Very weak collision energy dependence of $\pi^{0} /$ EM jet A_{N}
- Topological dependence of $\pi^{0} A_{N}$: isolated $\pi^{0}>$ non-isolated π^{0}
- γ multiplicity dependence of EM jet A_{N} : decreases with higher multiplicity
- Diffraction: single diffractive EM jet A_{N} is $>2 \sigma$ from 0 when integrating over x_{F}
- Run2022 and 2024: improved statistic for various objects using Forward Upgrades

[^0]
Transversity and Collins fragmentation functions

Quark polarization along the spin of a transversely polarized proton

Final state: Collins

- Observables: $A_{U T}^{\sin (\phi)}$ for hadrons
- Collins function is predicted to be universal

Collins asymmetry for $\pi^{ \pm}$in jets

Spin-dependent modulation of $\boldsymbol{\pi}^{ \pm}$in jets at mid-rapidity ($\left|\boldsymbol{\eta}_{j e t}\right|<1$):

- Significant Collins asymmetries for $\pi^{ \pm}$measured with high precision
- Stringent constraints on theoretical calculations of transversity and Collins FF
- New results show weak energy dependence and provide important constraints on the scale evolution for Collins asymmetry

Interference FF from di-hadron measurement

- Spin dependent di-hadron correlations probe collinear quark transversity coupled to the interference fragmentation function (IFF) at higher Q^{2} region compared to SIDIS
- The results can test the universality property of IFF from $e^{+} e^{-}$, SIDIS and p+p data
- Planning for precision measurement of IFF asymmetries for pion/kaon from 2022+2024 dataset

Where are we going?

STAR Forward Upgrade capabilities with jets and hadrons for transverse asymmetries:

- Study forward Sivers, Collins, and diffractive processes \rightarrow charge-tagged jets, di-jets, hadron-in-jets, and diffractive processes with rapidity gaps
- Before STAR: TMDs only came from fixed target $\mathrm{e}+\mathrm{p}$ data with low Q^{2}
- STAR's unique kinematics coverage with the Forward Upgrade: low to high x at moderate and high $\mathrm{Q}^{2} \rightarrow$ TMD evolution:
- x up to $\sim 0.5 \rightarrow$ sensitive to valence quark

Unpolarized program at STAR

$$
p \rightarrow \leftarrow
$$

W and Z^{0} cross section

Run11-13: STAR, PRD 103, 012001 (2021)

Cross section ratio of $\mathbf{W}^{+} / \mathbf{W}$ - constrains high x quark distributions $\overline{\boldsymbol{d}} / \overline{\boldsymbol{u}}$:

- Sensitive to the region $0.1<x<0.3$ in STAR midrapidity $(|\eta|<1)$ at $\mathrm{Q} \sim M_{W}$
- Clean theoretical and experimental observable

$$
\sigma_{W^{+}} / \sigma_{W^{-}} \approx \frac{u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+u\left(x_{2}\right) \bar{d}\left(x_{1}\right)}{\bar{u}\left(x_{1}\right) d\left(x_{2}\right)+\bar{u}\left(x_{2}\right) d\left(x_{1}\right)}
$$

Differential Z^{0} cross section vs. $\boldsymbol{p}_{\boldsymbol{T}}$:

- Constrains on the energy scale dependence of TMDs
- Sensitive to the region $0.1<x$ in STAR mid-rapidity $(|\eta|<1)$ at $\mathrm{Q}=M_{Z} \gg p_{T}$

Bertone et al., JHEP 06(2019)028
Bacchetta et al., JHEP 10(2022)127

Λ polarization

Access polarizing Fragmentation Functions(pFFs) by measuring transverse polarization of $\boldsymbol{\Lambda}$-in-jet at STAR:

- cover a wide range of jet p_{T} for measurement of energy scale dependence
- test universality of pFFs with results from $e^{+} e^{-}$and SIDIS

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1+\alpha P \cos \theta^{*}\right)
$$

Nonlinear gluon dynamics in QCD

Summary and outlook

High impact of STAR Cold QCD program:

Longitudinally polarized: insights into $\Delta \mathrm{g} ; \Delta \bar{u}>\Delta \bar{d}$ and $\Delta s \sim 0$

Transversely polarized:

- Sivers asymmetry for W/Z boson ~ 0
- Nonzero Collins asymmetry for hadron-in-jet and IFF
- Investigation of large forward A_{N}, small contribution from diffraction

Unpolarized:

- W/Z boson cross section \rightarrow high x quark distribution/TMD
- Forward di- π^{0} corr. \rightarrow nonlinear gluon dynamics
- Investigation of Λ polarization from various aspects

STAR will continue taking data with the Forward Upgrade through 2025: high-statistics tran. pol. pp data is coming soon!

- Understanding the origin of large forward A_{N}
- Testing TMD evolution and universality
- Constraining transversity at high x
- Understanding the nature of the initial state in nucleons and nuclei

Run period for STAR:
$\left.\begin{array}{|l|l|l|}\left.\hline \begin{array}{l}2024 \\ \text { (from Apr 15 }\end{array} \text { th }\right)\end{array} \begin{array}{l}19 \text { weeks of pp } \\ 6 \text { weeks of AuAu }\end{array} \quad \begin{array}{l}\text { Transversely } \\ \text { polarized pp }\end{array}\right]$

It's possible to take pAu in the last 2 years of RHIC Run!

Back up

STAR Forward Upgrade

STAR Forward Upgrade: $2.5<\eta<4$

Four new systems:

- Electromagnetic and Hadronic Calorimetry
- Tracking: Si detectors and small-strip Thin Gap Chambers (sTGC)

What we can measure:

- $h^{+/-}, e^{+/-}$(with good e/h discrimination)
- Photons, π^{0}
- Jets, h in jets
- Lambda's
- Drell-Yan and J / Ψ di-electrons
- Mid-forward and forward-forward correlations

Run period:

- STAR in parallel with sPHENIX:
- $2024 \rightarrow 200 \mathrm{GeV}$ polarized $\mathrm{p}+\mathrm{p}$ and $\mathrm{Au}+\mathrm{Au}$
- $2025 \rightarrow 200$ GeV Au+Au w/o p+Au

Dijet Sivers effects: kinematics

Observable for Probing the Sivers Effect in Dijet Event

The Sivers asymmetry can be probed via the signed opening angle ζ.
Definition of ζ

$$
\begin{gathered}
\zeta>\pi \text { when } \cos \left(\varphi_{\mathrm{b}}\right)>0 \\
\zeta<\pi \text { when } \cos \left(\varphi_{\mathrm{b}}\right)<0 \\
\text { where } \boldsymbol{\varphi}_{\mathrm{b}} \text { is dijet bisector angle }
\end{gathered}
$$

Extraction of asymmetry
The Sivers effect leads to a spin-dependent centroid shift of $\boldsymbol{\zeta}$, so we define the asymmetry as:

$$
\Delta \zeta=\frac{\langle\zeta\rangle^{+}-\langle\zeta\rangle^{-}}{P}
$$

where $\langle\zeta\rangle^{+/-}$is the centroid of ζ for spin-up and spin-down states, and \mathbf{P} is the beam polarization.

Complementarity and Universality

Where are we?
Where are we going?

2023

The RHIC Cold QCD Program
White Paper
the NSAC Longstrangen Planning process

Authors for the RHIC SPIN Collaboration'

arXiv:2302.00605

e $\rightarrow p$

Path to
RHIC
EIC

[^0]: See Xilin Liang's talk, WG5, Wed 4pm

