Constraining the Proton's Gluon Helicity Distribution with Inclusive Jet and Dijet Measurements at STAR

1

2

3

4

5

Scott W. Wissink, for the STAR Collaboration Indiana University, Bloomington, IN, USA

February 17, 2022

Abstract

A quantitative understanding of how gluonic spin contributes to the spin of the proton 6 has been a central goal of the RHIC spin program. In polarized pp collisions, the large 7 kinematic coverage of the Solenoidal Tracker At RHIC (STAR) provides sensitivity to gluons 8 over a broad range in their momentum fraction x through the qq and qq scattering processes 9 that dominate jet production at RHIC energies. The gluon helicity function, $\Delta g(x)$, can 10 be probed via measurements of the longitudinal double-spin asymmetry A_{LL} in inclusive jet 11 and dijet production, which are vital input to global analyses. Inclusive jet results from 12 STAR at mid-rapidity ($|\eta| < 1$) using 2009 pp data at $\sqrt{s} = 200$ GeV, when added to 13 such analyses, indicated substantial positive polarization (*i.e.*, aligned with the proton spin 14 direction) for gluons with x > 0.05. Since then, higher statistics data sets were collected in 15 2015 at the same energy, while significantly larger data samples have been recorded at \sqrt{s} 16 = 510 GeV in 2012 and 2013. In addition, new analyses have pushed the kinematic reach to 17 higher pseudorapidities (up to $\eta \sim 1.8$) and have been extended to study dijet production as 18 well, all of which provide new and much needed constraints in the largely unexplored region 19 x < 0.05. The status of these analyses and their potential impact on $\Delta g(x)$ will be discussed. 20