Measurement of Transverse Spin-Dependent Azimuthal Correlation of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at $\sqrt{s}=200~GeV~and~500~GeV$ at STAR

Navagyan Ghimire (For the STAR Collaboration) 05/03/2022

Supported in part by

Office of Science

Motivation

Nucleon Structure

Parton Distribution Functions(PDFs):

Unpolarized $(f_1(x))$

 $Helicity(g_1(x))$

Transversity $(h_1(x))$

- Less known from experiments than $f_1(x)$ and $g_1(x)$
- Chiral-odd quantity
- Extraction requires coupling to another chiralodd object, such as Fragmentation Functions (FF).
- For estimating tensor charge (g_T) , a precise determination of transversity is necessary.

$$g_T = \int_0^1 dx [h_1^q(x) - h_1^{\overline{q}}(x)]$$

Transversity $(h_1(x))$ in $p^{\uparrow}p$ Collisions

Interference Fragmentation Function $(H_1^{\not \leftarrow})$ Channel:

$$p \uparrow +p \rightarrow h^+h^- +X$$

- No jet reconstruction required
- Collinear framework preserved
- Better access to d-quark than SIDIS

$$d\sigma_{UT} \propto \sin(\phi_s-\phi_R)\int dx_a dx_b f_1(x_a) h_1(x_b) rac{d\Delta \widehat{\sigma}}{d\widehat{t}} H_1^{\epsilon}(z,M)$$
 A. Bacchetta and M. Radici Phys. Rev. D 70 (2004) 094032

Di-hadron correlation Asymmetry

$$A_{UT} = \frac{d\sigma \uparrow - d\sigma \downarrow}{d\sigma \uparrow + d\sigma \downarrow} \propto h_1 H_1^{\not\leftarrow}(z, M)$$

$$z = \frac{E^{h^+h^-}}{E^{parton}}$$
, $M_{inv} = \text{Invariant mass of hadron pair}$

= quark polarization

a, b, c = quark flavors

= proton polarization

Cross-ratio Method for A_{UT} Extraction

A_{UT} can be extracted from cross-ratio formula

$$A_{UT}\sin(\phi_s - \phi_R) = \frac{1}{P} \frac{\sqrt{N_{1,\alpha}^{\uparrow} N_{1,\beta}^{\downarrow}} - \sqrt{N_{1,\alpha}^{\downarrow} N_{1,\beta}^{\uparrow}}}{\sqrt{N_{1,\alpha}^{\uparrow} N_{1,\beta}^{\downarrow}} + \sqrt{N_{1,\alpha}^{\downarrow} N_{1,\beta}^{\uparrow}}}$$

Free from detector efficiencies and spin-dependent luminosities, reduces the systematic uncertainties.

 $N_{1,\alpha(\beta)}^{\uparrow}$ # of h^+h^- in upper, α (lower, β) half of the detector when beam polarization is up(\uparrow) (down(\downarrow)).

 A_{UT} is measured using a transversely polarized beam colliding with another unpolarized beam (integrating over the bunches with all spin states).

vector, $\overrightarrow{s_a}$ and scattering

plane(spanned by $\overrightarrow{p}_{beam}$ and \overrightarrow{p}_h)

 ϕ_R = angle between scattering plane

and di-hadron plane ($\overrightarrow{p}_{h,1}$ and $\overrightarrow{p}_{h,2}$)

Relativistic Heavy Ion Collider(RHIC)

Solenoidal Tracker At RHIC(STAR)

Magnet

Uniform magnetic field of 0.5 T

Barrel Electromagnetic Calorimeter(BEMC)

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Event triggering

Time Projection Chamber(TPC)

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Charge determination and particle momentum reconstruction
- PID via measuring ionization energy loss

Time Of Flight(TOF):

- $|\eta| < 1, 0 \le \phi \le 2\pi$
- Stopwatch for particles
- Helps to improve PID

PID at STAR

- At STAR PID is done by measuring average specific ionization energy loss $\left\langle \frac{dE}{dx} \right\rangle$ in TPC
- Poor $\frac{dE}{dx}$ resolution for p > 1 GeV/c

- When the $\frac{dE}{dx}$ vs p bands for two different particle types are close together or cross, TOF is extremely useful for PID.
 - TOF detector has a high capability of separating proton from kaon and pion for momenta up to 3 GeV/c.

A_{UT} at STAR

• A non-zero A_{UT} singal has been observed against different kinematic observables ($\eta_{pair}, p_{T_{pair}}, M_{inv}$) of the pion pairs ($\pi^+\pi^-$) in final state.

Including STAR
2006 results

- Phys. Lett. B 780 (2018) 332 • The published results agree with the IFF model calculation which predicts enhancement of A_{IIT} near ρ mass region.
- The statistical precision of the 2017 dataset is expected to be four times better than that of the 2011 dataset.
- STAR just completed taking another large pp dataset at 510 GeV (2022) ($L_{int}(pb^{-1}){\sim}400$) and is planning to take another pp 200 GeV ($L_{int}(pb^{-1}){\sim}265$) data set in 2024.

Phys. Rev. Lett. 120 (2018) 192001 0.4 -0.1-0.2 -0.310-2 10-1 0.05 0.00 -0.05-0.10-0.1510-2 STAR results play a crucial role in

M. Radici and A. Bacchetta

STAR results play a crucial role in constraining the global fit of transversity.

STAR Preliminary: $A_{UT} vs \eta_{pair}$

- A_{UT} as function of η_{pair} integrated over $p_{T_{pair}}$ and M_{inv}
 - Strong rise of A_{UT} signal towards higher η_{pair} where we reach the highest value of x.
 - η_{pair} direction is relative to the polarized beam.
- x, fractional momentum of proton carried by quark, and z, fractional energy of struck quark carried by pion pair as a function of η_{pair}
- x, z are estimated by simulation.
- Systematic uncertainties arise from PID (TPC alone) and trigger bias effect.
 - Significant reduction of the PID uncertainty is expected by including TOF.

STAR Preliminary: $A_{UT} vs p_{Tpair}$

- A_{UT} vs $p_{T_{pair}}$ for different M_{inv} and η_{pair} bins
 - Larger A_{UT} at higher $p_{T_{pair}}$ for η_{pair} > 0
 - Stronger signal when M_{inv} is around $M_{
 ho}{\sim}0.8~GeV/c^2$

STAR Preliminary: $A_{UT} vs M_{inv}$

- A_{UT} vs M_{inv} for different p_{Tpair} and η_{pair} bins
 - A_{UT} signal increase as $< p_{T_{pair}} > 1$ increases.
 - Significant A_{UT} signal is seen in the highest $p_{T_{pair}}$ bin, with enhancement near the ρ mass region.

STAR Preliminary: A_{UT} \overline{vs} $\overline{M_{inv}}$ with $\overline{p_T}_{pair}$ Integrated

- A_{UT} vs M_{inv} integrated over $p_{T_{pair}}$ for η_{pair} >0
 - Enhancement of A_{UT} around ρ mass, consistent with the previous measurement with improved precision and theoretical calculations.

STAR 2017 $p^{\uparrow}p$ collisions @ 510 GeV

• IFF analysis of STAR 2017 $p^\uparrow p$ at $\sqrt{s}=510$ GeV is underway.

STAR 2017 $p^{\uparrow}p$ collisions @ 510 GeV

- Previous STAR 2011 A_{IIT} results are statistically limited.
- Figure of merit (P^2L_{int}) for 2017 data is ~15 times larger than that of 2011 data.
- The statistical precision improvement by about a factor of 4 is expected compared to that of 2011 dataset.
- Data analysis is ongoing.
- Systematics uncertainty is expected to improve with TPC and TOF PID.

Summary

- Di-hadron azimuthal correlation asymmetry, A_{UT} , sensitive to transversity, has been measured as a function of various kinematic observables (η_{pair} , $p_{T_{pair}}$, M_{inv}) for the final state pion pairs.
 - A_{UT} enhances around the ho mass region, and rises with $p_{T_{pair}}$ and η_{pair} .
- STAR 2006 A_{UT} results showed a huge impact in constraining transversity through first ever global fit of transversity.
- With 200 GeV and 500 GeV data, the STAR A_{UT} results will aid in the extraction of transversity evolution around the valence quark region.
- PID systematic uncertainties are expected to improve by including TOF PID in addition to TPC PID.
- Planning unpolarized di-hadron cross-section measurement at 200 GeV and 500 GeV, which could reduce the uncertainties
 in transversity extraction.

