

Office of Science

Measurement of Λ hyperon spin-spin correlations in p+p collisions by the STAR experiment

Jan Vanek, for the STAR Collaboration Brookhaven National Laboratory DIS 2024, Grenoble 9. 4. 2024

A POLARIZATION PUZZLE

- In the 70's, it was discovered that Λ^0 hyperons are polarized in collisions of unpolarized p+Be collisions [G.Bunce, et al.: Phys. Rev. Lett. 36, 1113-1116 (1976)]
- Over nearly 50 years, Λ^0 polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions</sup> up to collision energies about 40 GeV
- These indicate the importance of final-state effects, e.g., fragmentation and hadronization

Phys. Rev. Lett. 36, 1113-1116 (1976)

A POLARIZATION PUZZLE

- In the 70's, it was discovered that Λ^0 hyperons are polarized in collisions of unpolarized p+Be collisions [G.Bunce, et al.: Phys. Rev. Lett. 36, 1113-1116 (1976)]
- Over nearly 50 years, Λ^0 polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions</sup> up to collision energies about 40 GeV
- These indicate the **importance of final-state effects**, e.g., fragmentation and hadronization

Phys. Rev. Lett. 36, 1113-1116 (1976)

What is the origin of the Λ^0 polarization?

- Does polarization of Λ^0 depend on spin of the target/projectile?
- Is there a contribution of an initial-state effect?
- Will parton spin correlation and entanglement manifest in Λ^0 polarization? [W. Gong, et al.: Phys. Rev. D 106 (2022) 3, L031501]

A POLARIZATION MEASUREMENT

• Single Λ^0 polarization is measured via $\Lambda^0 \to p\pi^+$ decay channel with $BR = (64.1 \pm 0.5)\%$. In the Λ^0 rest frame, protons are emitted preferentially in the direction of Λ^0 spin

• The distribution of protons in Λ^0 rest frame is then given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha P_{\Lambda}\cos(\theta^*)$$

- P_{Λ} is the Λ^0 polarization
- Λ^0 : $\alpha_+ = 0.732 \pm 0.014$, $\overline{\Lambda^0}$: $\alpha_- = -0.758 \pm 0.012$
- \hat{n} is normal vector to the production plane
- Angle $(\theta^*, \text{ or } \theta_p)$ is measured between \widehat{n} and momentum of proton (p) in Λ 's rest frame

$$\hat{n} = \vec{p}_{beam} \times \vec{p}_{\Lambda}$$

HERMES: Phys.Rev.D76:092008,2007

MOTIVATION FOR A SPIN-SPIN CORRELATIONS

CMB radiation

Temperature correlations

Heavy-ion collisions

Momentum correlations

'Anisotropies' measured by two-point correlation function. Pure final-state effects cannot contribute to the correlation as it violates causality.

MOTIVATION FOR A SPIN-SPIN CORRELATIONS

CMB radiation

Temperature correlations

Heavy-ion collisions

Momentum correlations

'Anisotropies' measured by two-point correlation function. Pure final-state effects cannot contribute to the correlation **as it violates causality**.

Proton-Proton collisions

Spin correlation

A (more) direct probe to the initial-state parton spin effects

STAR

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate

Jan Vanek, DIS 2024

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boost (anti-)proton from decay of the corresponding Λ^0 ($\overline{\Lambda}^0$) to rest frame of its mother
 - Proton momenta in mother rest frame: $p_{p,CMS_{\Lambda}}$, $p_{\bar{p},CMS_{\bar{\Lambda}}}$

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boost (anti-)proton from decay of the corresponding Λ^0 ($\overline{\Lambda}$) to **rest frame of its mother**
 - Proton momenta in mother rest frame: p_{p,CMS_Λ} , $p_{ar p,CMS_{ar \Lambda}}$
- Measure angle θ^* between the two **boosted protons**
 - The distribution of pair angle is given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} \sim 1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*)$$

- α_1 and α_2 are α_+ or α_- , depending on Λ^0 hyperon pair
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
- λ^0
 - This experimental method is sensitive to selection criteria and detector acceptance
- Major source is lower cut on p_T of π
 - Preferential selection of Λ decays, where π is emitted along A momentum
 - This is called the acceptance effect and is corrected for in this analysis
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 hyperons

SOLENOIDAL TRACKER AT RHIC (STAR)

- Key subsystems for this analysis:
 - Solenoidal magnet
 - 0.5 T magnetic field with low p_T coverage
 - Time Projection Chamber (TPC)
 - Measurement of charged particle transverse momentum (p_T)
 - Particle identification (PID) based on energy loss in TPC gas
 - Full azimuthal coverage for $|\eta| < 1$

EVENT AND TRACK SELECTION, PID

- Data-set:
 - p+p collisions at $\sqrt{s} = 200$ GeV (2012)
 - Ca. 400M minimum bias events
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification to obtain pure proton and pion sample
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex

Ionization energy loss in TPC

A SIGNAL EXTRACTION

- Signal extraction determined from 2D M_{inv} distributions of unlike-sign (US) πp pairs
- Three components:
 - a) Peak: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with another πp from Λ^0 ($\overline{\Lambda}^0$) decay
 - b) Ridges: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with combinatorial background
 - c) Continuum: combinatorial background paired with combinatorial background
- Contributions (b) and (c) are subtracted from (a) and fitted with 2D Gaussian function
 - Signal region is defined as mean $\pm 3\sigma$

CORRECTIONS, BACKGROUND SUBTRACTION

- Measured $[dN/d\cos(\theta^*)]_{meas}$ distribution for $\Lambda^0\overline{\Lambda}^0$ pairs before acceptance correction
 - (US-US) distribution (red) has a shape which originates from acceptance and resolution of the STAR detector
- Acceptance correction done using mixed (ME) event hyperon pairs
 - Separate for (US-US) and background
- Background distribution is subsequently subtracted from the (US-US) distribution
- Same method repeated for same-sign hyperon pairs

A SPIN-SPIN CORRELATION EXTRACTION

• $dN/d\cos(\theta^*)$ distributions from data after acceptance correction and background subtraction

- Corrected distribution is fitted with $dN/d\cos(\theta^*) = A[1 + B\cos(\theta^*)]$
 - A and B are parameters of the fit
 - *A* is normalization, $B = \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2}$

A SPIN-SPIN CORRELATIONS

- $P_{\Lambda_1\Lambda_2}$ are consistent with zero within uncertainties
- Hint of polarization signal for $\Lambda^0\overline{\Lambda}{}^0$ pairs at 2σ statistical significance
- Data suggest no significant spin-spin correlation of initial state s (anti-)quark pair
 - This measurement provides upper limit on Λ^0 hyperon spin-spin correlations in p+p collisions at $\sqrt{s}=200~\text{GeV}$
- First experimental search for Λ^0 hyperon spin-spin correlations We encourage theory colleagues to calculate this from different physics frameworks

17

SUMMARY AND OUTLOOK

- We conduct the first experimental search for Λ^0 hyperon spin-spin correlations
 - It is found consistent with zero within uncertainty, although uncertainty is large
 - This new approach provides additional insights to the initial-state parton spin effects

• Outlook:

- Investigate the correlation for Λ^0 pairs with different rapidity and azimuthal angle gaps
- Study p_T dependence of the spin-spin correlations
- Study the correlations with large rapidity gap utilizing the STAR forward upgrade using p+p collisions at $\sqrt{s} = 200$ GeV to be collected in 2024
- Publication of the 2012 data coming soon!
 - First steps of publication process starting now

THANK YOU FOR ATTENTION

9. 4. 2024 9. 4. 2024

BACKUP

EVENT AND TRACK SELECTION, PID

D	at	:a-	S	e	t
ע	aı	.d-	S	е	ι

- p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ (2012)
 - Ca. 400M minimum bias events
- Events with primary vertex close to center of STAR detector selected
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification to obtain pure proton and pion sample
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex

$ V_{\rm z} $ < 30 cm		
p_{T} $>$ 150 MeV/c		
$ \eta < 1$		
nHitsFit > 20		
nHitsFit/nHitsMax > 0.52		
$ n\sigma_{\pi} < 3$		
$ n\sigma_{\rm p} < 2$		
$DCA_{\pi-PV} > 0.3 \text{ cm}$		
$DCA_{p-PV} > 0.1 cm$		
DCA _{pair} < 1 cm		
$2 \mathrm{~cm} < L_{\mathrm{dec}} < 25 \mathrm{~cm}$		
$\cos(\theta) > 0.996$		

SYSTEMATIC ERRORS OVERVIEW

- Summary table of systematic uncertainties
 - σ_{ME} Residual effect from ME correction
 - σ_{bckg} Background subtraction systematic uncertainty
 - σ_{α} Uncertainty of polarization from weak decay parameter α_{+} and α_{-}
 - σ_{cuts} Variation of selection criteria

$$\bullet \ \sigma_{sys} = \sqrt{\sigma_{ME}^2 + \sigma_{bckg}^2 + \sigma_{\alpha}^2 + \sigma_{cuts}^2}$$

	σ_{ME} [%]	σ_{bckg} [%]	σ_{α} [%]	σ_{cuts} [%]
$\Lambda\overline{\Lambda}$	36.6	< 1	2.5	< 1
ΛΛ	37.3	< 1	2.7	< 1
$\overline{\Lambda}\overline{\Lambda}$	23.1	< 1	2.2	< 1