Measurement of Λ hyperon spin-spin correlations in p+p collisions by the STAR experiment

Jan Vanek (for the STAR collaboration)

Brookhaven National Laboratory

About 50 years ago, it was discovered that Λ hyperons are produced po-4 larized in collisions of unpolarized protons on beryllium. Since then, the Λ polarization has been observed in various collision systems, including $e^+ + e^-$ 6 collisions. Majority of current results indicate the importance of final state effects, such as hadronization or fragmentation, in polarization of the Λ hyperons. A recently proposed technique for the investigation of the Λ hyperon 9 polarization is a measurement of $\Lambda \overline{\Lambda}$, $\Lambda \Lambda$, and $\overline{\Lambda} \overline{\Lambda}$ spin-spin correlations. This 10 technique is expected to help understand if the Λ polarization has any contri-11 bution from the early stage of the p+p collisions, e.g., from initial state parton 12 spin correlation, or if it is exclusively a final state effect. 13

In this presentation, we present the preliminary results of the $\Lambda\Lambda$, $\Lambda\bar{\Lambda}$, and $\Lambda\bar{\Lambda}$ spin-spin correlations in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ collected by the STAR experiment in 2012. The Λ and $\bar{\Lambda}$ candidates are reconstructed at midrapidity (|y| < 1) with transverse momentum in range of $0.5 < p_{\rm T} < 5.0 \text{ GeV}/c$. This measurement will provide additional insight into the importance of the

¹⁹ initial state effects for the Λ hyperon polarization.

3