

Office of Science

Evidence of $\Lambda \overline{\Lambda}$ spin correlation in p+p collisions at STAR

Jan Vanek, for the STAR Collaboration Brookhaven National Laboratory DIS 2025, Cape Town 25. 3. 2025

NON-PERTURBATIVE QCD: QUARK CONFINEMENT

 Quarks and gluons are confined within hadrons due to the nature of the strong interaction, a standing QCD challenge

Challenges:

 Difficult to calculate because the number of gluons increases at large distances in strong interaction

• Questions:

- How do hadrons acquire their properties?
 - Parton properties vs. hadron properties (mass, spin...)
- How does transition from partons to hadrons occur?
 - Hadronization

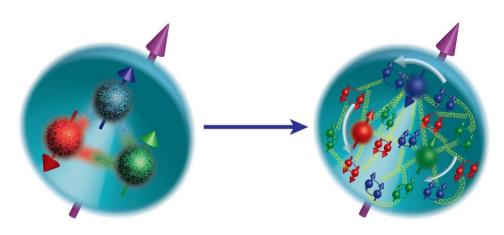
Uncovering how confinement shapes hadron properties is one of the key questions in nuclear and particle physics.

EMERGENT HADRON PROPERTIES

Mass

- Hadron masses far exceed those of their constituent partons
 - Chiral symmetry breaking
 - Dynamical mass generation from QCD vacuum

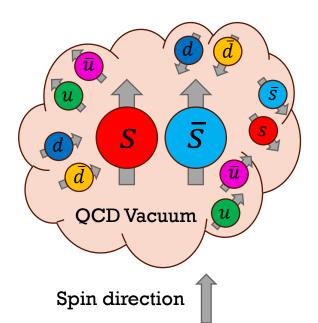
EMERGENT HADRON PROPERTIES


Mass

- Hadron masses far exceed those of their constituent partons
 - Chiral symmetry breaking
 - Dynamical mass generation from QCD vacuum

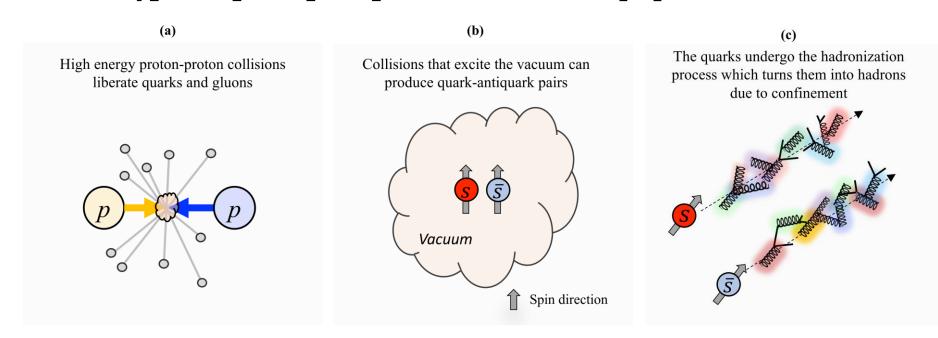
Spin

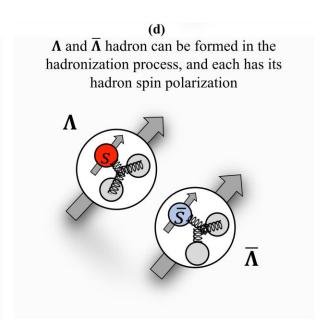
- Proton spin crisis
 - Valence quarks account for only $\sim 30\%$ of proton's spin
- Λ^0 hyperon polarization puzzle
 - Polarized Λ^0 observed in collisions of unpolarized particles
- Our goal is to experimentally reveal the origin of these emergent hadron properties


VACUUM: MAXIMALLY ENTANGLED QUARK PAIRS

- Quark condensate has up (u, \bar{u}) , down (d, \bar{d}) , and strange (s, \bar{s}) quarks
- Quark pairs from the vacuum are expected to emerge as maximally entangled spin-triplet states with aligned spins
 - The only way to preserve the vacuum's quantum numbers $J^{PC} = 0^{++}$

J. R. Ellis, D. Kharzeev, and A. Kotzinian, Z. Phys. C 69, 467 (1996)

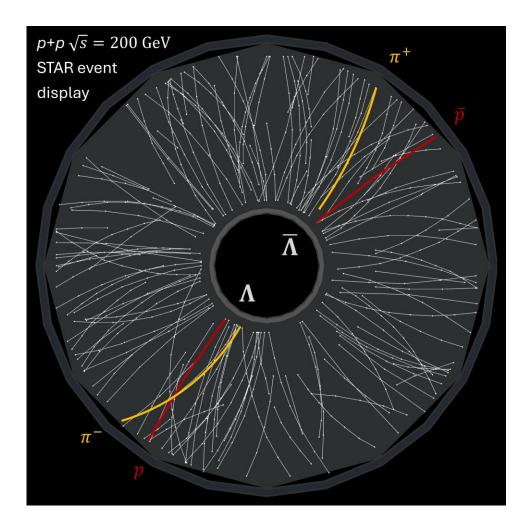

• We aim to experimentally track the evolution of these entangled $s\bar{s}$ quark pairs into the hadronic level



NEW EXPERIMENTAL APPROACH

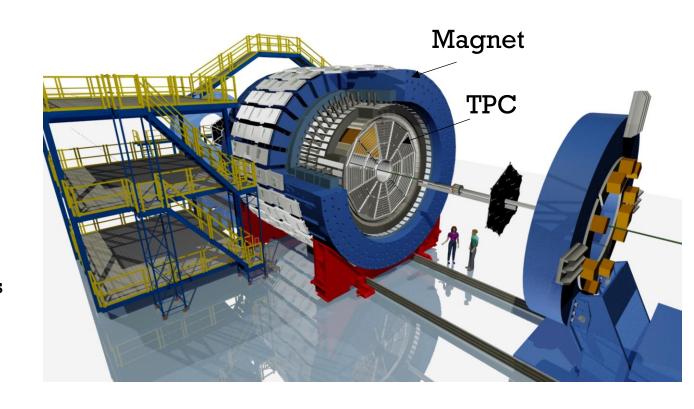
• Λ^0 hyperon pair spin-spin correlations in p+p collisions:

• We use the spin-spin correlation of $\Lambda^0 \overline{\Lambda}{}^0$ hyperon pairs measured in p+p collisions to study the hadronization of the entangled $s\bar{s}$ quark pairs from the QCD vacuum


EXPERIMENTAL METHOD

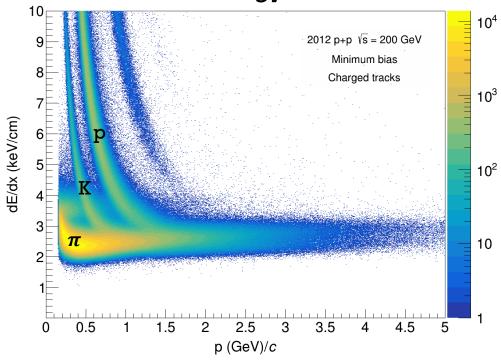
- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
- Boost (anti-)proton from decay of the corresponding Λ^0 ($\overline{\Lambda}$) to **rest frame of its mother**
- Measure angle θ^* between the two **boosted protons**
 - The distribution of pair angle is given by:

$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = \frac{1}{2} \left[1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*) \right]$$


- α_1 and α_2 are weak decay parameters of Λ^0 or $\overline{\Lambda}{}^0$ (α_- or α_+)
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons
 - No global single Λ^0 hyperon polarization expected at STAR at mid-rapidity

SOLENOIDAL TRACKER AT RHIC (STAR)

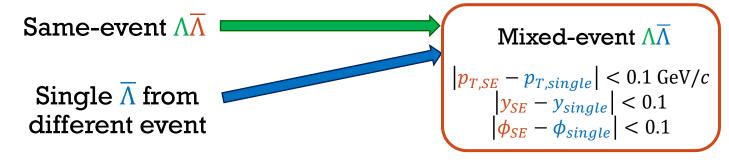
- Key subsystems for this analysis:
 - Solenoidal magnet
 - 0.5 T magnetic field allowing low $p_{\rm T}$ coverage
 - Time Projection Chamber (TPC)
 - Measurement of charged particle transverse momentum (p_T)
 - Particle identification (PID) based on energy loss in TPC gas
 - Full azimuthal coverage for $|\eta| < 1$

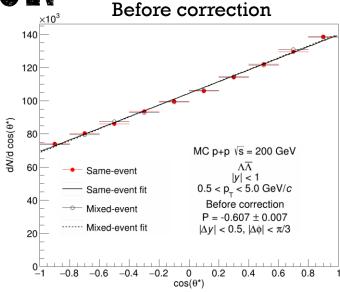


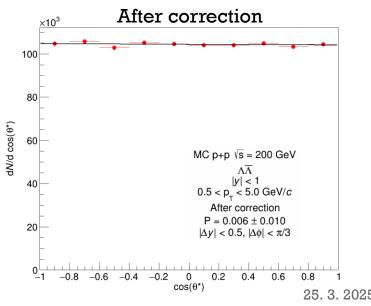
- Data-set:
 - p+p collisions at $\sqrt{s}=200$ GeV (2012)
 - Ca. 600M minimum bias events
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification (PID) to obtain pure proton and pion sample
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex

Ionization energy loss in TPC

AO SIGNAL EXTRACTION


- Signal extraction determined from 2D $M_{\rm inv}$ distributions of unlike-sign (US) πp pairs
- Three components:
 - a) Peak: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with another πp from Λ^0 ($\overline{\Lambda}^0$) decay
 - b) Ridges: πp from Λ^0 ($\overline{\Lambda}^0$) decay paired with combinatorial background
 - c) <u>Continuum</u>: combinatorial background paired with combinatorial background
- Contributions (b) and (c) are subtracted from (a) and fitted with 2D Gaussian function
 - Signal region is defined as mean $\pm 2\sigma$

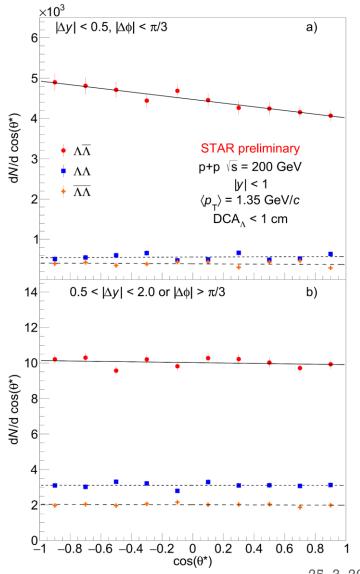

ACCEPTANCE EFFECT CORRECTION


STAR

- Measured $dN/d\cos(\theta^*)$ distributions have significant slope originating from acceptance effect
 - Predominantly from lower p_T cut on daughter π
- Correction done using mixed-event (ME) hyperon pairs
 - ME definition example:

 Verified using standalone PYTHIA simulation (shown on the right), as well as full simulation with detector effects

SPIN-SPIN CORRELATION EXTRACTION

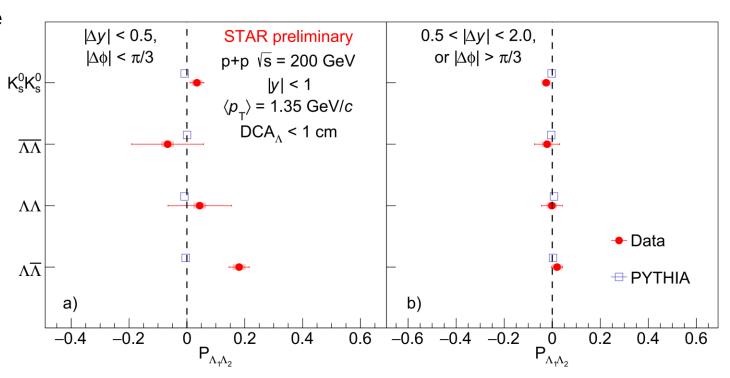

• Spin-spin correlation is extracted by fitting $dN/d\cos(\theta^*)$ distributions after ME correction for signal+background (P_{S+B}) and background (P_B) using:

$$dN/d\cos(\theta^*) = A[1 + B\cos(\theta^*)]$$

- A and B are parameters of the fit
- *A* is normalization, $B = \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2}$
- Signal (P_S) is calculated according to:

$$P_{S+B} = f_S P_S + (1 - f_S) P_B$$

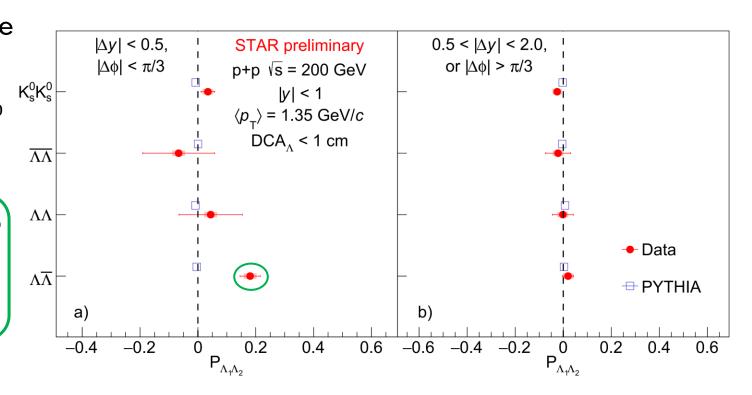
- Signal extracted for two relative pair kinematics:
 - Short-range: $|\Delta y| < 0.5$ and $|\Delta \phi| < \pi/3$
 - **Long-range:** $0.5 < |\Delta y| < 2.0 \text{ or } \pi/3 < |\Delta \phi| < \pi$


A SPIN-SPIN CORRELATIONS

- Spin-spin correlation for short-range

 (a) and long-range (b) hyperon
 pairs
 - Compared to null measurement of K_s^0 and PYTHIA calculation
- Short-range $\Lambda\overline{\Lambda}$ pairs show non-zero spin-spin correlation
 - $P_{\Lambda_1\Lambda_2} = 0.181 \pm 0.035_{stat} \pm 0.022_{sys}$
 - Significance 4.4 standard deviation

 All other pairs are consistent with zero


A SPIN-SPIN CORRELATIONS

- Spin-spin correlation for short-range

 (a) and long-range (b) hyperon
 pairs
 - Compared to null measurement of K_s^0 and PYTHIA calculation
- Short-range $\Lambda\overline{\Lambda}$ pairs show non-zero spin-spin correlation
 - $P_{\Lambda_1\Lambda_2} = 0.181 \pm 0.035_{stat} \pm 0.022_{sys}$
 - Significance 4.4 standard deviation

 All other pairs are consistent with zero

MAXIMUM EXPECTED SPIN-SPIN CORRELATION

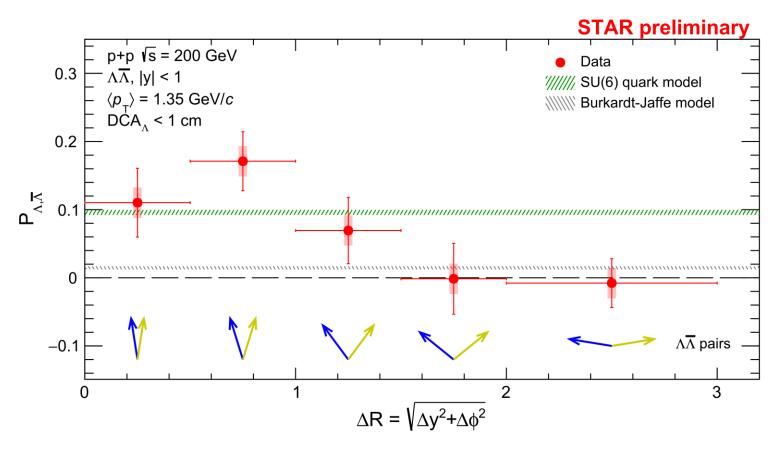
- Pure spin triplet $s\bar{s}$ pairs from QCD vacuum: $P_{s\bar{s}}=1/3$ N. A. Tornqvist, Phys. Lett. A542117, 1 (1986)
 - What happens when such pair hadronizes into $\Lambda^0\overline{\Lambda}{}^0$ pair?
- Expected maximum for $\Lambda^0 \overline{\Lambda}{}^0$ pairs in our dataset based on models and feed-down from decay of heavier hyperons:

•
$$P_{\Lambda_1\Lambda_2,SU(6)} = 0.096 \pm 0.004$$

$$P_{\Lambda_1\Lambda_2,BJ} = 0.015 \pm 0.002$$

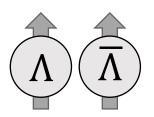
- Model prediction has two components:
 - Single Λ^0 ($\overline{\Lambda}{}^0$) polarization depending on its mother particle from two models:
 - Non-relativistic SU(6) quark model and Burkardt-Jaffe (BJ) model
 - Feed-down mixture for $\Lambda^0\overline{\Lambda}{}^0$ pairs from PYYHIA 8 + Geant simulation

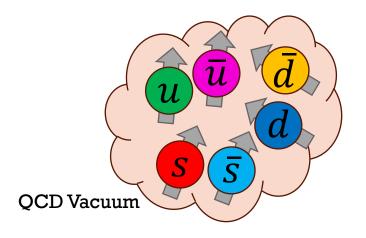
Single Λ^0 ($\overline{\Lambda}{}^0$) polarizations depending on its mother particle from SU(6) and BJ models


Λ's parent	SU(6) BJ model		
Primary	1	0.63	
Σ^0	1/9	0.15	
Ξ^0	0.6	-0.37	
Ξ^-	0.6	-0.37	
Σ^*	5/9	N/A	

M. Burkardt and R. L. Jaffe, Phys. Rev. Lett. 70, 2537 (1993)

AA SPIN-SPIN CORRELATIONS

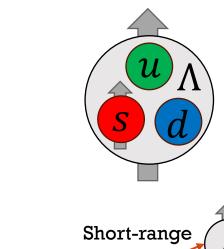

- Spin-spin correlation of $\Lambda \overline{\Lambda}$ pairs as a function of $\Delta R = \sqrt{\Delta y^2 + \Delta \phi^2}$
 - Compared to SU(6) and BJ models
- Short range $\Lambda\overline{\Lambda}$ pairs appear to be in triplet state
 - First direct probe of QCD vacuum?
- Possible observation of quantum decoherence
 - Spin-spin correlation seem to "turn off" with larger pair separation

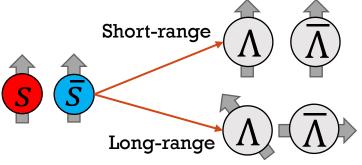


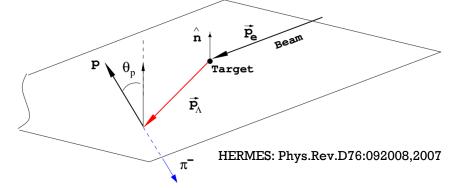
PHYSICS IMPLICATIONS

STAR

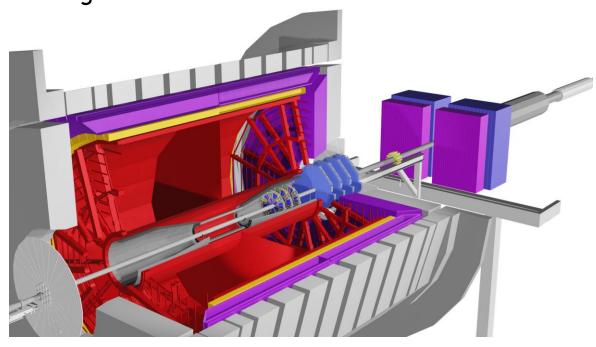
- We observed the first evidence of a positive spinspin correlation of short-range $\Lambda\overline{\Lambda}$ pairs from p+p collisions at 200 GeV, recorded by the STAR experiment in 2012.
- This may represent a new experimental approach to probing the quark condensate
 - Our results align with short-range $\Lambda\overline{\Lambda}$ pairs being in a spin-triplet state, as expected for $\Lambda\overline{\Lambda}$ pairs from the QCD vacuum
- The ss pair's spin-spin correlation appears to largely survive hadronization
 - First time, we seem to track the spin degree of freedom through QCD quark-to-hadron transition
 - A key insight into hadronization process of (s) quarks




14


PHYSICS IMPLICATIONS CONT.

- Result support a scenario where s quarks carry most of the hyperon's spin
 - Results offer valuable insight into how partons contribute to the Λ hyperon's spin
- Possible experimental approach to observe quantum decoherence
 - Spin-spin correlation weakens with increasing pair separation
 - Can be extended to p+Au or Au+Au to study influence of cold nuclear matter effects and the QGP
- Provides new insight into the Λ hyperon polarization puzzle and spin transfer
 - New experimental constraints on both initial- and finalstate models



FUTURE PROSPECTS

- Extension of kinematic coverage beyond |y| < 1
 - Access to region with non-zero single Λ^0 hyperon polarization
 - STAR forward upgrade
- Hight $p_T \Lambda^0$ in jets study of $g \to s\bar{s}$
 - Spin configuration of $s\bar{s}$ given by gluons
- Collision energy dependence
 - From RHIC to LHC
- Other collision systems
 - p+A cold nuclear matter effects
 - A+A Quark Gluon Plasma, chiral symmetry restoration

STAR forward upgrade $2.5<|\eta|<4$ Forward Tracking and Calorimeter Systems Taking data since 2022

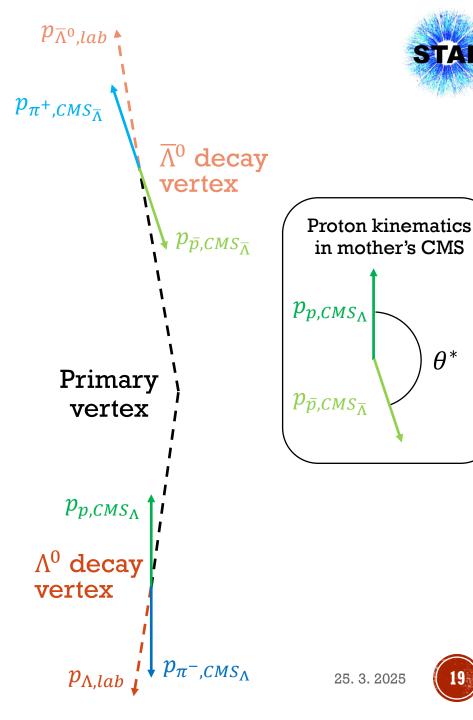
THANK YOU FOR ATTENTION

BACKUP

EVENT AND TRACK SELECTION, PID

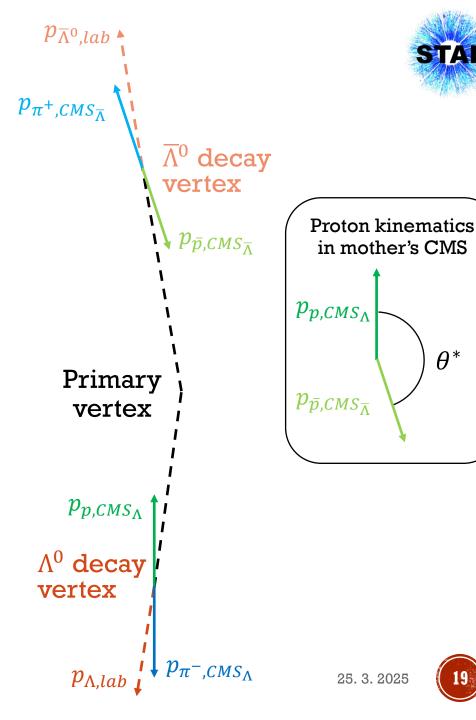
$\boldsymbol{\Gamma}$		4 _	_	_	1
	\mathbf{a}	τa	-S	$\boldsymbol{\mathcal{L}}$	Т
$\boldsymbol{\mathcal{L}}$	u	ıч	. D	·	

- p+p collisions at $\sqrt{s} = 200 \text{ GeV}$ (2012)
 - Ca. 600M minimum bias events
- Events with primary vertex close to center of STAR detector selected
- Track selection to ensure good track quality within geometrical acceptance
- Particle identification to obtain pure proton and pion sample
- Decay topology to suppress combinatorial background from tracks originating from close to primary vertex


Event selection	$ V_{\rm z} $ < 60 cm	
Track selection	p_{T} $>$ 150 MeV/c	
	$ \eta < 1$	
	nHitsFit > 20	
	nHitsFit/nHitsMax > 0.52	
Particle identification	$ n\sigma_{\pi} < 3$	
	$ n\sigma_{\rm p} < 2$	
	$DCA_{\pi-PV} > 0.3 cm$	
	$DCA_{p-PV} > 0.1 cm$	
Decay topology	$DCA_{\Lambda-PV} < 1.0 cm$	
Λ ⁰	$DCA_{pair} < 1.0 cm$	
	$2 \mathrm{~cm} < L_{\mathrm{dec}} < 25 \mathrm{~cm}$	
	$\cos(\theta) > 0.996$	

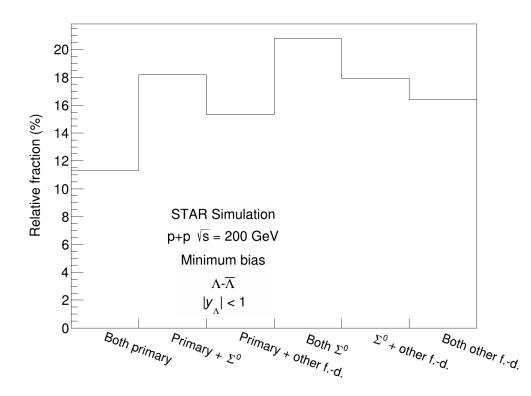
EXPERIMENTAL METHOD

- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boost (anti-)proton from decay of the corresponding Λ^0 ($\overline{\Lambda}$) to **rest frame of its mother**
 - Proton momenta in mother rest frame: p_{p,CMS_Λ} , $p_{ar p,CMS_{ar \Lambda}}$
- Measure angle θ^* between the two **boosted protons**
 - The distribution of pair angle is given by:


$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = \frac{1}{2} \left[1 + \alpha_1 \alpha_2 P_{\Lambda_1 \Lambda_2} \cos(\theta^*) \right]$$

- α_1 and α_2 are α_+ or α_- , depending on Λ^0 hyperon pair
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 ($\overline{\Lambda}^0$) hyperons

EXPERIMENTAL METHOD


- Find a Λ^0 hyperon pair (any combination) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
 - $p_{\Lambda^0,lab} = p_{p,lab} + p_{\pi^-,lab}$
- Boo Λ^0
 - This experimental method is sensitive to
 selection criteria and detector acceptance
- $_{\mathrm{M}_{\mathrm{d}}}$ ullet Major source is lower cut on p_{T} of π
 - Preferential selection of Λ decays, where π is emitted along Λ momentum
 - This is called the acceptance effect and is corrected in this analysis
- A non-zero $P_{\Lambda_1\Lambda_2}$ would indicate spin correlation between the two Λ^0 hyperons

FEED-DOWN ESTIMATION

- Feed-down estimation for of $\Lambda^0 \overline{\Lambda}{}^0$ in p+p collisions at $\sqrt{s}=200~{\rm GeV}$
 - PYTHIA 8 + Geant simulation

25. 3. 2025