Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}p$ collisions at $\sqrt{s} = 510$ GeV at STAR

Navagyan Ghimire for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

Quarks that are transversely polarized inside a transversely polarized nucleon are 1 described by the transversity distribution, $h_1^q(x)$. Since $h_1^q(x)$ is a chiral-odd function, 2 the only way to access it is through a process where it couples to another chiral-odd 3 function, such as the spin-dependent interference fragmentation function (IFF) in $p^{\uparrow}p$ 4 collisions. The coupling of $h_1^q(x)$ and IFF results in an experimentally measurable di-5 hadron correlation asymmetry, A_{UT} . Precise measurements of A_{UT} at high center-of-6 mass energies, \sqrt{s} , are essential for accessing $h_1^q(x)$ at high Q^2 . Previously, the STAR 7 experiment at RHIC has measured non-zero A_{UT} using $p^{\uparrow}p$ data at $\sqrt{s} = 500$ GeV 8 recorded in 2011 with an integrated luminosity of 25 pb^{-1} . In 2017, STAR collected 9 additional ~ 350 pb⁻¹ of $p^{\uparrow}p$ data at $\sqrt{s} = 510$ GeV, which will significantly improve 10 the statistical precision of A_{UT} measurement and thus further constrain global fits of 11 $h_1^q(x)$, especially for 0.07 < x < 0.2. We will present status updates on the A_{UT} 12 measurement based on 2017 data. 13