¹ Transverse Single-Spin Asymmetry for Electromagnetic Jets at Forward Rapidities at ² STAR in p^+p Collisions at $\sqrt{s} = 200$ GeV

Latiful Kabir for the STAR Collaboration

University of California, Riverside, CA, USA

Abstract

- 3
- 4

5

There have been various attempts, both experimentally and theoretically, to understand the origin 6 of the unexpectedly large transverse single-spin asymmetries (A_N) for inclusive hadron production 7 at forward rapidity in p^+p collisions that persist at high center-of-mass energies. Two proposed 8 potential sources are the twist-3 contributions in the collinear factorization and the transverse-9 momentum-dependent contributions from either the initial-state quark and gluon Sivers functions 10 or the final-state Collins fragmentation function. In 2015 and 2017, RHIC collected the largest 11 data sets so far on transversely polarized $p^{\uparrow}+p$ collisions at $\sqrt{s} = 200$ GeV and 510 GeV, which 12 are ideal to further characterize A_N and explore its potential sources. The STAR Forward Meson 13 Spectrometer (FMS) and Endcap Electromagnetic Calorimeter (EEMC), having pseudo-rapidity 14 coverages of 2.6 - 4.2 and 1.1 - 2.0 respectively, can be used to detect photons, neutral pions, and 15 eta mesons. We present an analysis update for A_N of electromagnetic jets in FMS and EEMC using 16 $p^{\uparrow}+p$ collisions at $\sqrt{s} = 200$ GeV. In this analysis, we explore the dependences of A_N on photon 17 multiplicity inside the jet, jet transverse momentum, and jet energy. 18