Differential measurements of jet sub-structure observables and their correlations in p+p collisions at  $\sqrt{s} = 200$  GeV in STAR

Monika Robotkova for the STAR Collaboration

Nuclear Physics Institute Czech Academy of Sciences

DIS 2021, Stony Brook, NY April 14, 2021







## Jets and clustering algorithms

- Jets are collimated sprays of hadrons
- Jets are defined using algorithms

#### Anti- $k_T$ algorithm

• 
$$d_{ij} = rac{\min(1/p_{T_i}^2, 1/p_{T_j}^2)\Delta R_{ij}^2}{R}$$
,  $d_{iB} = 1/p_{T_j}^2$ 

• Clustering starts from the particles with the highest transverse momentum

#### Cambridge/Aachen (C/A) algorithm

- $d_{ij} = \Delta R_{ij}^2 / R^2$ ,  $d_{iB} = 1$
- Particles are clustered exclusively based on angular separation, ideal to be used to resolve jet sub-structure



- $d_{i\mathrm{B}}$  distance of the particle i from the beam
- $p_{\rm T}$  transverse momentum
- $\Delta R_{ij}$  distance between the particle *i* and *j*
- R jet resolution parameter
- At present, the jet sub-structure is being increasingly studied



# SoftDrop

- Grooming technique used to remove soft wide-angle radiation from the jet
- Connects parton shower and angular tree
  - Jets are first found using the anti-k<sub>T</sub> algorithm
  - Recluster jet constituents using the C/A algorithm
  - Jet j is broken into two subjets j<sub>1</sub> and j<sub>2</sub> by undoing the last stage of C/A clustering
  - Jet j is final SoftDrop jet, if subjets pass the condition on the right, otherwise the process is repeated



Laroski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

#### • Shared momentum fraction *z*<sub>g</sub>

$$z_{\rm g} = \frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} \theta^{\beta},$$

where 
$$\theta = \frac{\Delta R_{12}}{R}$$

 Groomed radius R<sub>g</sub> - first ΔR<sub>12</sub> that satisfies SoftDrop condition

 $p_{T,1}, p_{T,2}$  - transverse momenta of the subjets  $z_{cut}$  - threshold (0.1)  $\beta$  - angular exponent (0) STAR

 $\Delta R_{12}$  - distance of subjets in the

## Motivation

- Measurements of jet sub-structure serve as an experimental tool for studying QCD
- Parton shower in vacuum is described by the momentum and angular scales
- So far these two scales were measured independently via  $z_{\rm g}$  and  $R_{\rm g}$
- Our goal is to study correlation betweeen z<sub>g</sub> and R<sub>g</sub> as a function of ρ<sub>T,jet</sub>







## Motivation

- Previous ATLAS measurement uses Lund jet plane
- Significant differencies in varying hadronization models at high  $p_{T,jet}$  at the LHC  $\rightarrow$  we want to study this at lower  $p_{T,jet}$ , where non-perturbative effects are expected to be larger
- While Lund jet plane integrates over all splits, we focus on the first split



ATLAS, Phys. Rev. Lett. 124, 222002 (2020)



# STAR experiment

#### **TPC** - Time Projection Chamber

- Reconstruction of charged particle tracks
- $\bullet\,$  Full azimuthal angle,  $|\eta|\,\,\leq\,\,1$
- **BEMC** Barrel Electromagnetic Calorimeter
  - Reconstruction of neutral component of the jets
  - ullet Full azimuthal angle,  $|\eta|~<~1$
  - Segmentation  $(\Delta\eta \times \Delta\phi) = (0.05 \times 0.05)$





### Data analysis

- p + p collisions at  $\sqrt{s} = 200$  GeV, 2012
- $\bullet~{\sim}11$  million events analyzed

#### Event and track selection

- Transverse momenta of tracks: 0.2  $< p_{\rm T} <$  30 GeV/c
- Tower requirements:  $0.2 < E_T < 30 \text{ GeV}$

#### Jet reconstruction

- Jets reconstructed with anti- $k_T$  algorithm, reclustered with the C/A algorithm
- $\bullet\,$  Transverse momenta of jets: 15  $< p_{\rm T,jet} <$  40 GeV/c
- Resolution parameters: R = 0.4, R = 0.6
- SoftDrop parameters:  $z_{
  m cut}~=~0.1,~eta~=~0$

$$\frac{\min(p_{\mathsf{T},1}, p_{\mathsf{T},2})}{p_{\mathsf{T},1} + p_{\mathsf{T},2}} > z_{\mathsf{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$



# Unfolding

- Measurement is affected by finite efficiency and resolution of the instrumentation
- Our goal is to deconvolve detector effects and obtain particle-level distribution
- Results are in 3D correction for  $p_{T,jet}$  is needed
  - For each particle-level  $p_{T,jet}$  bin, we do projection of this bin into detector-level  $p_{T,jet}$ , and get the weights from detector-level  $p_{T,jet}$ bins
- We unfold  $z_g$  vs.  $R_g$  via iterative Bayesian unfolding in 2D using RooUnfold and unfolded spectra for each detector-level  $p_{T,jet}$  bin are weighted and summed
- Additional corrections for trigger and jet finding efficiencies are applied



## Systematic uncertainties

- Systematic uncertainties estimated by varying the detector response
  - Hadronic correction fraction of track momentum subtracted is varied
  - Tower scale variation tower gain is varied by 3.8%
  - Tracking efficiency efficiency is varied by 4%
  - Unfolding iterative parameter is varied from 4 to 6
- Systematics due to prior shape variation will be included in the final publication



Unfolded  $z_{\rm g}$  distributions with respect to  $R_{\rm g}$  for  $20 \le p_{\rm T,iet} < 25 \ {\rm GeV}/c$  with R = 0.4



 When we go from small to large R<sub>g</sub> we move from collinear hard splitting to softer wide angle splitting



Unfolded  $z_{\rm g}$  distributions with respect to  $R_{\rm g}$  for 20  $\leq p_{\rm T,iet} < 25 \text{ GeV}/c$  with R = 0.4 and R = 0.6

*R* = 0.4

*R* = 0.6



 No significant change of distributions is observed with larger resolution parameter



# Unfolded $z_g$ distributions with respect to $R_g$ for different $p_{T,iet}$ bins with R = 0.4



• Distributions change mildly with varying  $p_{\rm T,jet} \rightarrow R_{\rm g}$  is the driving factor



Monika Robotkova

## Comparison with MC models

- Leading order MC models describe the trend observed in data
- Further studies aim to disentangle the impact of perturbative and non-perturbative models in the MC





# Summary

- First measurement of z<sub>g</sub> vs. R<sub>g</sub> as a function of p<sub>T,jet</sub> was shown
   2+1D unfolding was applied
- $z_{\rm g}$  has a weak dependence on  $p_{\rm T,jet}$  and a strong dependence on  $R_{\rm g}$
- We can select significantly softer splits by selecting wider angle splits

#### Next steps:

- Comparing to different MC models and theoretical calculations
  - Different hadronization (Sherpa) and parton shower (Herwig, Pythia) models
- Sub-structure observables, splitting scale  $k_T$  and groomed mass fraction  $\mu$ , are being studied (not shown in this presentation)
- We are exploring other unfolding methods, e.g. machine learning techniques such as OmniFold (Phys. Rev. Lett. **124**, 182001 (2020))





Thank you for your attention!



## Back up



Monika Robotkova

16 / 17

# 2D Bayesian Unfolding

- 2D iterative Bayesian method implemented in the RooUnfold
- Procedure has following steps:
  - In the jets at the detector and particle level are reconstructed separately
  - 2 Jets are matched based on  $\Delta R < 0.6$
  - Jets without match missed jet (particle level) and fake jets (detector level)
  - Response between detector level and particle level for observables is constructed
- We use RooUnfold response which contains Matches and Fakes
  - Unfolding is done separately for  $p_{\rm T}^{det}$  intervals 15-20, 20-25, 25-30, 30-40 GeV/c
- Then unfolded spectra are weighted with values from our projection and put together
- Together with trigger missed and unmatched weighted spectra we get our fully unfolded spectrum

