Di-hadron correlations in pp and pA collisions at STAR

Xiaoxuan Chu (For the STAR Collaboration) April 12-16, 2021

Gluon dynamics at small x

- Parton Distribution Functions: at small x, nucleon wave function is dominated by gluons; the rise of gluon density has to stop at some point → saturation
- Saturation scale Q_s²: when Q² < Q_s², gluon splitting and recombination reach a balance
- Gluon dynamics changes from linear to nonlinear: DGLAP/BFKL → BK/JIMWLK
- Large Q: small $\alpha_s \rightarrow$ perturbative QCD calculations under control

BFKL:
$$\frac{\partial N(x, r_T)}{\partial \ln(1/x)} = \alpha_s K_{\text{BFKL}} \otimes N(x, r_T)$$
 $N \sim (1/x)^{\lambda}$
BK: $\frac{\partial N(x, r_T)}{\partial \ln(1/x)} = \alpha_s K_{\text{BFKL}} \otimes N(x, r_T) - \alpha_s [N(x, r_T)]^2$

Multiple scattering

beam-view

Associated particle

$$C(\Delta \phi) = \frac{N_{pair}(\Delta \phi)}{N_{trig} \times \Delta \phi}$$

- Why forward: two final state particles at forward rapidity provide access to small x regime
- Method: measure the azimuthal correlation between two final hadrons in pp and pA
- **pp**: $2 \rightarrow 2$ process \Rightarrow back-to-back di-hadron
- pA: back-to-back configuration is smeared by multiple gluon interactions

\mathbf{P}_{T} is balanced by many gluons

2

 $x_1 \sim \frac{p_{T1e^{\eta_1}+} p_{T2e^{\eta_2}}}{\sqrt{s}} \gg x_2 \sim \frac{p_{T1e^{-\eta_1}+} p_{T2e^{-\eta_2}}}{\sqrt{s}}$

DIS 2021

side-view

Di- π^0 correlations in dAu

• dAu: interpretation of the suppression complicated by alternative explanation; much higher pedestal in dAu

→ pAu collisions are theoretically and experimentally cleaner

STAR forward detector

Forward Meson Spectrometer (FMS) : 2.6 < η < 4.1

- Au, Al beams \rightarrow A dependence
- Forward rapidity hadron production
 - can access low-x gluons with high-x quark probe
- The high energy photons form showers at FMS \rightarrow reconstruction: cluster finding, shower shape fitting

West

 π^{0} , decaying into two photons, is constructed from a pair of photon candidates

Saturation scale Q_s²

R. Abdul Khalek et al., arXiv:2103.05419

x-Q² phase space

R. Abdul Khalek et al., arXiv:2103.05419 ² (GeV²) ² (GeV²) Di-hadron measurements with A eA DIS (E-139, E-665, EMC, NMC) JLab-12 10³ vA DIS (CCFR, CDHSW, CHORUS, NuTeV) • DY (E772, E866) DY (E906) 10² DY (RHIC $\sqrt{s} = 200 \text{ GeV}$) η= 10 perturbative non-perturbative Q_s^2 (Au) **10**⁻¹ 10⁻³ 10⁻² 10⁻⁵ 10⁻⁴ 10^{-1} 1 Х

□ STAR FMS data ($\sqrt{s_{NN}} = 200 \text{ GeV}$) can probe the saturation region

 One can study the evolution on x and Q² through scanning p_T

PYTHIA Kinematics: x₁, x₂

trigger π^0 : p_{T1}

 π^0 :

PYTHIA Kinematics: Q²

Di- π^0 correlations in pp

trigger π^0 : p_{T1}

associated $\pi^{\rm U}$:

PT2

Coincidence Probability

 $\Delta \phi$ [rad]

Di- π^0 correlations in pp and pA

GBW: A. Stasto et al., PLB 716(2012) 430-434

- A dependence: at low p_T, more suppression is observed in pAu than pAl in comparison with the reference pp
- p_T dependence: less suppression at high p_T (large x and Q²) in pAu
- Qualitatively agree with predictions: GBW model \rightarrow incorporates gluon saturation

MinBias pA/pp: full p_T range

- Area: suppression in pA compared to pp. Less suppression in pAl than pAu
- Width: no broadening observed in pA compared to pp with FMS resolution
- Pedestal: quite stable, previous dAu results show much higher pedestal than pp

Event activity

Energy deposited at EAST BBC (ΣE_{BBC}) quantifies "event activity"

- East: nucleus beam going direction; backward rapidity
- High energy deposition refers to "high activity" collisions

Event activity in pAI and pAu		
Event	$\Sigma E_{ m BBC}$	Class
activity	range $(\times 10^3)$	
Lowest	3-8	31%- $60%$
Medium	8-15	60%- $81%$
Highest	>15	81%-100%
Lowest	3-12	15%- $43%$
Medium low	12-24	43%- $69%$
Medium high	24-36	69%- $88%$
Highest	>36	88%-100%
	Event activity Event activity Lowest Medium Highest Lowest Medium low Medium high Highest	Event activity in pAl and pA Event ΣE_{BBC} activity range (×10 ³) Lowest 3-8 Medium 8-15 Highest >15 Lowest 3-12 Medium high 24-36 Highest >36

STAR Preliminary 10¹⁰ 10⁸ pp collisions 10⁶ 10⁴ 10² 10000 20000 30000 40000 50000 60000 10¹⁰ 10⁸ pAl collisions 10⁶ "high" ٥W **10**⁴ 10² 1 10000 20000 30000 40000 50000 60000 10¹⁰ 10⁸ pAu collisions 10⁶ 10⁴ "high" "low" 10² 1 20000 30000 40000 50000 10000 60000 $\Sigma \mathbf{E}_{\mathbf{BBC}}$

Xiaoxuan Chu

Event activity dependence in pAu

rcBK: Javier L. Albacete et al., PRD 99, 014002 (2019)

pp, pAu: $\sqrt{s_{NN}} = 200$ GeV, $2.6 < \eta < 4.1$

- Suppression depends on event activity \rightarrow enhanced in high activity events at low p_T
- Suppression at highest activity events is consistent with predictions based on gluon saturation model: rcBK at b=0

Event activity dependence in pAu

rcBK: Javier L. Albacete et al., PRD 99, 014002 (2019)

pp, pAu: $\sqrt{s_{NN}} = 200 \text{ GeV}, 2.6 < \eta < 4.1$

- Suppression depends on event activity \rightarrow enhanced in high activity events
- Suppression at highest activity events is consistent with predictions based on gluon saturation model: rcBK at b=0
- Width and pedestal are stable in pp and pAu against event activity

Event activity dependence in pAl

• pAl: indication of enhanced suppression in "high activity" events.

Summary and outlook

- □ The evidence of a novel universal regime of non-linear gluon dynamics in nuclei is very important to help us understand QCD processes in Cold Nuclear Matter:
 - Understand the collective dynamics of gluons
 - Investigate inner landscape of nuclei: initial state input to eA/pA/AA

Di-hadron correlation is a key measurement in the pA physics program at STAR

- STAR shows a clear signature of non-linear gluon dynamics with di-hadron correlation measurement
- First measurement of nuclear effect dependence on A: stronger suppression in pAu than pAl
- $\circ~$ Event activity dependence: suppression enhanced in "high activity" collisions at low p_T
- □ STAR 2016 dAu results are on the way: the effect from double (multiple) parton interactions?