1	Tracking the baryon quantum number with heavy-ion collisions
2	Chun Yuen Tsang (Kent State University), for the STAR
3	Collaboration
4	Abstract
5	
6	The baryon number is a conserved quantity in quantum chromodynamics (QCD),
7	which is conventionally thought to be shared equally among the valence quarks in
8	baryonic matter. However, an alternative theory suggests that the baryon number
9	is carried by a non-perturbative, Y-shaped topology of gluons connecting to three
10	quarks. This topology is called the baryon junction. Neither theory has been
11	experimentally verified yet. The STAR Collaboration reports here two pieces of
12	experimental evidence which collectively indicate that valence quarks do not carry

13 baryon numbers.

14

We report our first finding based on data from isobar collisions (⁹⁶₄₄Ru+⁹⁶₄₄Ru 15 and ${}^{96}_{40}$ Zr+ ${}^{96}_{40}$ Zr) at $\sqrt{s_{NN}}$ = 200 GeV. The result shows that at mid-rapidity (|y| < 0.5), 16 the ratio of net baryon (B) to the net charge difference (ΔQ) between the two 17 systems is roughly twice the ratio of mass number to atomic number differences 18 (i.e. 96/4) in central collisions. If both charge and baryon numbers are carried by 19 the valence guarks, $B/\Delta Q$ should be close to 96/4. Moreover, results from semi-20 inclusive photonuclear Au+Au collisions at $V_{SNN} = 54.4$ GeV show baryon stopping 21 (an excess of baryons compared to anti-baryons) with a significant rapidity 22 asymmetry. The rapidity dependence of the measured baryon stopping is 23 comparable to that observed in hadronic nucleus-nucleus collisions and to the 24 25 baryon junction prediction.

26