

Recent results on W AL in longitudinally polarized p+p collision at STAR

Jinlong Zhang for the STAR collaboration DNP meeting Oct 24, 2013

Motivation

Proton Spin Puzzle :

 $\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$ (Jaffe-Manohar, 1990)

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s}) dx$$

Integral of quark polarization is well measured in DIS to be ~30%, some info on decomposition from SIDIS but sea quarks are not well constrained.

Flavor-separate anti-quark polarized PDF measurement

$$\Delta q(x) \equiv q^+(x) - q^-(x)$$

Why W?

- Ws couple directly to the quarks and anti-quarks of interest
- V-A coupling of the weak interaction
 leads to perfect spin separation
- > W charges allow flavor separation
- Detect W+/W- through e+/e- decay channels

$$u + d \to W^+ \to e^+ + \nu$$
$$d + \bar{u} \to W^- \to e^- + \bar{\nu} \qquad A_{I}$$

1

$$P_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} = \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, y_{W^{+}} << 0 \end{cases}$$

Measure parity-violating single-spin asymmetry:

____ I

_

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_{L}^{W^{-}} \propto \frac{-\Delta d(x_{1})\overline{u}(x_{2}) + \Delta \overline{u}(x_{1})d(x_{2})}{d(x_{1})\overline{u}(x_{2}) + \overline{u}(x_{1})d(x_{2})} = \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W^{-}} >>0\\ \frac{\Delta \overline{u}(x_{1})}{\overline{u}(x_{1})}, y_{W^{-}} <<0 \end{cases}$$

Expectations for W AL

* Charged lepton tends to emit parallel (anti-parallel) to W⁻(W⁺) due to the handedness of produced neutrino.

STAR Detector Overview

W Selection

- Match PT>10GeV track to EMC cluster
- **Isolation Ratio**
- **Pt-balance**
- e+ vs. e- charge separation
- At forward region, improve background rejection by additionally using Endcap Shower Maximum Detector (ESMD)

Background Estimation

W signal : * "Jacobian Peak" Background: * Electroweak (from Pythia) * Z → ee Embedding MC * W→ τν Embedding MC * Second EEMC * Data-driven QCD

 Estimate wrong sign contamination by using Q*ET/PT

Entries

0+

 $Q*E_T/P_T$

2826

25<Ere<50 GeV

gauss fit: x0, o

-1.04, 0.32

sum of both

250

200

150

100

50

STAR 2012 W AL(η_e)

- A_L(W-) is systematically larger than the DSSV predictions
 - * The enhancement at η_e<0, in particular, is sensitive to the Δū polarized antiquark distribution
- A_L(W+) is consistent with theoretical predictions using the DSSV polarized PDFs
- * The systematic uncertainties for A_L are well under control for $|\eta_e| < 1.4$

DSSV++ Global Analysis

- A preliminary global analysis from the DSSV group that includes preliminary RHIC 2009 ALL data and STAR 2012 W AL data.
- Shift in central values for $\Delta \bar{u} \& \Delta \bar{d}$.
- STAR run12 W results provide significant constraints on $\bar{u} \& \bar{d}$ polarization.

STAR 2012 Z AL

STAR Preliminary Run 2012

 $Z \rightarrow e^+e^-$ Candidate

Projection of Run 2013

- ➢ FOM(P²L) of Run 2013(~85pb⁻¹) are 4 times higher than run 2012.
- Extension of backward / forward
 acceptance enhances sensitivity to ū / d
 quark polarization

Summary and Outlook

- The production of W bosons in polarized p+p collisions provides a powerful tool to study the spin-flavor structure of proton.
- STAR has measured the parity-violating AL of W bosons as a function of lepton η_e , which provide significant constraints on $\Delta \bar{u}$ and $\Delta \bar{d}$.
- > AL for Z/γ^* production was also measured, and is consistent with the theoretical predictions.
- Ongoing work will give final results from final production of Run12 and Run11 dataset.
- > Upcoming Run 2013 W AL analysis is expected to give more accurate result of $AL(\eta_e)$ and further constraints on $\bar{u} \& \bar{d}$ polarization.

Backup

Flavor Asymmetry of the Sea

Unpolarized Flavor Asymmetry:

- Quantitative calculation of Pauli blocking does not explain d/u ratio
- Non-perturbative processes may be needed in generating the sea
- * E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.

Polarized Flavor Asymmetry:

- Valence u and d distributions are well determined from DIS
- Polarized flavor asymmetry x(Δū Δd̄) could help differentiate models
- SIDIS results depend on FFs

Why W?

A.1 Proton helicity = "+" **A.2** Proton helicity = "-"

$$A_{L}^{W^{+}} \propto \frac{u_{+}^{-}(x_{1})\overline{d}(x_{2}) - u_{-}^{-}(x_{1})\overline{d}(x_{2})}{u_{+}^{-}(x_{1})\overline{d}(x_{2}) - u_{-}^{-}(x_{1})\overline{d}(x_{2})} = -\frac{\Delta u(x_{1})}{u(x_{1})}$$

B. Polarized (subscript) proton provides \bar{d}

B.1 Proton helicity = "+" **B.2** Proton helicity = "-"

$$A_{L}^{W^{+}} \propto \frac{\overline{d}_{+}^{+}(x_{1})u(x_{2}) - \overline{d}_{-}^{+}(x_{1})u(x_{2})}{\overline{d}_{+}^{+}(x_{1})u(x_{2}) + \overline{d}_{-}^{+}(x_{1})u(x_{2})} = \frac{\Delta \overline{d}(x_{2})}{\overline{d}(x_{2})}$$

Superpose **A** and **B** :
$$A_L^{W^+} \circ$$

$$A_L^{W^+} \propto \frac{-\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \propto \frac{-\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)}$$

Ongoing combined 2012+2011 Analysis

- More Ws have been found in Final production.
- Include low luminosity dataset of Run2011.
- The asymmetries may be measured yields of a few counts, where assumptions of Gaussian uncertainties break down.
- Exploring **profile likelihood method** to extract the asymmetry .

Year	L(pb ⁻¹)	Ρ*	P ² L(/pb ⁻¹)	W yield**
2011	9.4	0.49	2.3	417
2012	77.4	0.56	22.6	2965

* Average beam polarization for blue and yellow
** Charge summed yields ET=[25,50]GeV

Profile Likelihood

Simplified example:

for a two spin state experiment, we have a 3-D likelihood function.

 $L_{\Omega}(A^{W}, N^{0}, \beta) \equiv L_{PHY}(A^{W}) \cdot L_{SPIN}(A^{W}, N^{0}, \beta) \cdot L_{BCK}(\beta)$

 $L_{PHY}(A^W) = H(1 - |A^W|)$: Physical constraint on $|A^W| < 1$

Model of yield for a given A^w (product of Poisson functions)

 $L_{SPIN}(A^{W}, N_{0}, \beta) = \prod_{i}^{2} f(N_{i} | \mu_{i}(A^{W}, N^{0}, \beta)) : \mu_{\pm} = l_{\pm} N^{0} (1 \pm P \beta A^{W})$

Model for background dilution (gaussian estimated separately):

$$L_{BCK}(\beta) = g(\beta - \hat{\beta}, \sigma_{\beta}) \quad \beta = \frac{f_W}{f_W + f_Z + f_E + f_Q}$$

- Reduce 3-D likelihood function to 1-D only depends on A^w by finding the nuisance parameters set which maximize the Likelihood function.
- The maximum is the central value for the measured asymmetry.
- The upper and lower error bounds are found by the integrating out to the desired CL from the central value.

What do W decays look like?

$W \rightarrow e + v$ Candidate Event

- Isolated track pointed to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

Di-jet Background Event

- Several tracks pointing to EM energy deposit in several towers
- Vector p_T sum is balanced by opposite jet, "missing energy" is small

Forward Rapidity($\eta_e > 1$) W Selection

- Similar concept as mid-rapidity:
- Which extends to η ~1.4
 to reconstruct high p_T TPC track
- Use isolation ratios and p_T imbalance to reduced QCD background
- Improve background rejection by using the Endcap Shower Maximum Detector (ESMD)

Forward Background Estimation

- Similar with mid-rapidity background estimation.
- Fewer TPC points at forward rapidity cause worse charge sign solution.

Entries

 $Q*E_T/P_T$

gauss fit: x0, σ

-1.11, 0.61 1.27, 0.64

sum of both

Systematic Uncertainties

- **Beam polarization uncertainty: correlated scale 3.4%**
- Relative luminosity uncertainty: correlated offset ΔA_L = 0.007
 - Accounts for possible parity-violating asymmetry in QCD events used for luminosity monitor
 - * A_L is consistent with zero for a sample of high-p_T QCD events (invert isolation ratio and P_T-Balance requirements)
 - * Systematic uncertainty estimated as half the statistical error on A_L for this high-p_T QCD sample
- * Background estimation: less than 10% of statistical error
 - * Uncertainty on unpolarized background contribution β: uncorrelated between points less than 10% of statistical error
 - * Uncertainty on polarized background contribution α: negligible

Previous STAR measurements

 2009 was a very successful first 500 GeV physics run
 2012 increase in FOM = P²L of an order of magnitude!

