Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive π⁰ Production in Polarized p+p Collisions at RHIC

Oleksandr Grebenyuk (LBNL) for the STAR Collaboration

APS - DNP 2008, Oakland CA

Motivation

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma(Q^2) + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$$

Proton spin puzzle:

quark spins carry only a small fraction of proton spin $\Delta\Sigma \approx 0.3$ The gluon spin contribution ΔG is less constrained

Polarized proton collisions at RHIC probe gluon polarization by measuring the observable double spin asymmetry A_{LL} of particle production

$$A_{LL} = \sum_{ABC} \frac{\Delta f_A \Delta f_B \times \Delta \sigma_{AB \to CX} \times D_C}{f_A f_B \times \sigma_{AB \to CX} \times D_C}$$

Motivation

Why measure π^0 ?

- Produced abundantly and provides supplemental information to jets measured by STAR
- Measured statistically independent from jets
 with different systematic uncertainties
- In most cases leading particle in a jet and carries most of its momentum
- Can be reconstructed in a calorimeter up to high momenta

STAR Detector

Subsustems used in this analysis:

- Beam-Beam Counters triggering and luminosity
- Barrel Electromagnetic Calorimeter triggering and final state reconstruction
- Time Projection Chamber central tracking and vertexing

STAR EMCal

π^0 reconstruction

 $\pi^0 \rightarrow \gamma \gamma$

New trigger in 2006: two stage triggering L0 High Tower + L2 Trigger Patch High energy in one cell + some in 3x3 surrounding cells Triggered luminosity 3.7 pb⁻¹

Data selection:

- Vertex required
- SMD information in both dimentions required
- TPC veto if charged track points to a cluster
- π^0 reconstruced with p_{τ} above 5.2 GeV/c (above trigger threshold)
- π^0 invariant mass: $M^2 = 2 E_1 E_2 (1 \cos\theta)$
- $-0.95 \le \eta \le 0.95$ (stay away from edges)
- $Z_{yy} \leq 0.8$ (reject very asymmetric decays)
- Yield counted in window $0.08 \le M \le 0.25 \text{ GeV/c}^2$

π^0 reconstruction

Data to Monte Carlo comparison

π^0 cross section

Cross section measured on 2005 data

Sampled luminosity: 0.4 pb⁻¹ (High Tower), 44 µb⁻¹ (Min Bias)

One half of BEMC used only: $0.1 \le \eta \le 0.9$

Systematic uncertainties dominated by 5% uncertainty in BEMC energy calibration

Good agreement with NLO pQCD calculation and with PHENIX measurement

Good agreement between different triggers

Summary

- Most recent measurement of A $_{_{LL}}$ and the cross section for inclusive $\pi^{\scriptscriptstyle 0}$ production have been presented
- Maximum gluon polarization scenario is excluded, but measurement cannot at this time distinguish between other scenarios.
- STAR is planning for a long p+p run in Run 9. Expecting large increase in FOM with 60% polarization and 50 pb⁻¹

RHIC

Collider capabilities:

- Polarized p+p collisions at 200 and 500 GeV
- Bunch-to-bunch spin control
- Siberian snakes maintain vertical polarization
- Spin rotators flip to longitudinal at two experiments
- Polarimetry

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - R N_{+-}}{N_{++} + R N_{+-}}$$

- Polarization measurement P: Coulomb-Nuclear Interference (CNI) and H-jet polarimeters Average polarization P≈55%
- Relative luminosity R: Measured locally to 10⁻³ precision at STAR by Beam-Beam Counters Varies by 1 ± 0.15 between fills

Summary

Results consistent with PHENIX 2006 preliminary

Summary

The Run 6 π° result sees a significant increase in statistical precision as well as a greater reach in p_T compared to Run 5

