R&D studies of a small-strip thin gap chamber as a STAR forward tracker

Prashanth Shanmuganathan

(For the STAR Collaboration) Brookhaven National Laboratory

Forward upgrade at STAR - fSTAR

• Strongly endorsed by the BNL PAC

STAR presented a rich program for future operation after BES II that addresses many important and innovative topics in p+p, p+A and A+A physics. The most interesting of these is focused on forward physics that would be made possible by a forward upgrade covering rapidities up to 4.2

- Fulfill the RHIC physics program
 - Address key open questions in cold QCD
 - Study nuclear initial state and transport properties from heavy-ion collisions
- Lays ground work for the EIC
- West side of the STAR covering 2.5 < η < 4
- p+p, p+A and A+A collisions in 2021/22 and in parallel with sPHENIX data taking

small-strip Thin Gap Chamber - sTGC

- Provides tracking and position resolution less than 100 μm, at high luminosity and background
- Anode (HV): 50 μm Gold plated tungsten wires held at a potential of ~2900 V
- Cathode(Ground): graphite-epoxy mixture with a typical surface resistivity of 100 to 200 kΩ/□ sprayed on G-10
- Readout: Small copper strips, perpendicular to anode wires, outside of cathode
- p+p & p+A: charge separation, photon suppression
- A+A: 0.2<pT<2 GeV/c with 20-30% resolution

sTGC Prototype

- Two chambers made at SDU-China
 - Each chamber 30 × 30 × 0.28 cm
 - Both are glued together with honeycomb structure in between
 - And perpendicular to the strips for 2D readout
 - Readout possible from strips and wires
 - 94 channels per chamber
- Leaks from the chambers are tested with pressure drop method, ^T and found less than 10 cc/hr

Gas system

Efficiency measurements

- Performance of the prototype was tested in the clean room with several gases including n-Pentane
- Triple coincidence from three scintillators are used for triggering on cosmic ray muons
- Existing TPC electronics was used for data acquisition

Gas options

- sTGC uses n-pentane + CO₂ (45+55)%
 to operate in high gain ~10⁷
- n-pentane is flammable and liquid below 96^o F (36^o C)
 - Very difficult to operate
- Trying different gases:
 - C10 -> Ar 90% + CO₂ 10%
 - P8.5 -> Ar 91.5% + CH₄ 8.5%
 - i-Butane(C₄H₁₀) + Ar (30+70)%
 - n-pentane(C₅H₁₂) + CO₂ (45+55)%

Gas	Density, $ m mgcm^{-3}$	$E_x \ { m eV}$	E_I eV	$W_I \ { m eV}$	$dE/dx _{ m min}$ keV cm ⁻¹	${N_P \over { m cm}^{-1}}$	${N_T \over { m cm}^{-1}}$
He	0.179	19.8	24.6	41.3	0.32	3.5	8
Ne	0.839	16.7	21.6	37	1.45	13	40
Ar	1.66	11.6	15.7	26	2.53	25	97
\mathbf{Xe}	5.495	8.4	12.1	22	6.87	41	312
CH_4	0.667	8.8	12.6	30	1.61	28	54
$\mathrm{C_2H_6}$	1.26	8.2	11.5	26	2.91	48	112
$\mathrm{iC_4H_{10}}$	2.49	6.5	10.6	26	5.67	90	220
$\rm CO_2$	1.84	7.0	13.8	34	3.35	35	100
CF_4	3.78	10.0	16.0	54	6.38	63	120

۲

...

Gas options

Sr90 source Wire readout 1325 V

Sr90 source

1325 V

C10

Strip readout

C10

	Signal at			
Gas	Low HV (V)	High HV (V)/ Trip limit	Operation	
C10 -> Ar+CO ₂ (90%+10%)	1250	1600	Stable	
P8.5 -> Ar+CH ₄ (91.5%+8.5%)	1400	1600	Not stable	
i-Butane(C ₄ H ₁₀) + Ar (30+70)%	1500	1800	Not stable	
n-pentane(C ₅ H ₁₂) + CO ₂ (45+55)%	2200	2800+	Stable	

- Sr90 source is used
- Signal from wire and strips are recorded
- Low HV: Signal at least 10 times greater than the noise level
- More gas mixtures are being tested

Sas

Note: amp inverts the signal

Wire and strip signals

Scope trace of trigged cosmic muon

muons

- One time bin = 107 ns (1 RHIC clock)
- Most of the muons are in between 10 and 15 time bin
- There is an after pulse seen from the data
- More investigation is ongoing

- Number of strip>= 4
- Number of time bins >= 4
- Detailed cluster studies are ongoing

Prashanth Shanmuganathan

Efficiency

C10 gas efficiency

Total triggered events: $\frac{top \ layer \ respond}{Total \ Events} = 1\%$ $\frac{bottom \ layer \ respond}{Total \ Events} = 1.8\%$ $\frac{at \ least \ one \ layer \ respond}{Total \ Events} = 2.7\%$

Self trigger:

 $\frac{two \ layer \ respond}{bottom \ layer \ respond} = 7.3\%$ $\frac{two \ layer \ respond}{top \ layer \ respond} = 13.0\%$

n-pentane + CO₂ efficiency

Total triggered events:

 $\frac{top \ layer \ respond}{Total \ Events} = 98.3\%$ $\frac{bottom \ layer \ respond}{Total \ Events} = 98.8\%$ $\frac{at \ least \ one \ layer \ respond}{Total \ Events} = 99.8\%$

Self trigger:

 $\frac{two \ layer \ respond}{bottom \ layer \ respond} = 98.5\%$ $\frac{two \ layer \ respond}{top \ layer \ respond} = 99.0\%$

Efficiency is found to be independent of temperature change $(17 \pm 2^{\circ} C)$ (and flow rate)

RHIC – Run 19 operation

- Prototype was mounted on the west plat form of STAR, in front of HCAL, EMCAL and preshower
- Electronics and DAQ were integrated to STAR
- Used pre-mixed C10 gas
 - Other gases were not possible with safety requirement at that time
- Collected data with Au+Au 200 GeV collisions
 - Data is being analyzed

RHIC – Run 19 operation

- Prototype was mounted on the west plat form of STAR, in front of HCAL, EMCAL and preshower
- Electronics and DAQ were integrated to STAR
- Used pre-mixed C10 gas
 - Other gases were not possible with safety requirement at that time
- Collected data with Au+Au 200 GeV collisions
 - Data is being analyzed

Summary and Outlook

- Forward upgrade at STAR enables to address key open questions in both spin and heavy-ion physics, and provides ground work for the EIC
- Requirements for the upgrade can be met with the sTGC, without significant loss of performance compare to all silicon tracking
 - Provides position resolution better than 100 μm , charge discrimination, photon suppression and pT measurements in forward rapidity
- n-Pentane + CO2 mixtures shows better than 98% efficiency
 - We couldn't get similar efficiency from the other gases that we tried
 - More gas mixtures are being studied
 - Position resolution studies is being conducted at Shandong university
- Prototype was integrated to STAR during RHIC run 19 and tested with C-10 gas
- For the next RHIC run 2020:
 - 60X60 cm prototype will be integrated to STAR
 - A new n-pentane and CO₂ gas mixing system is being developed and tested

Proposed final arrangement

- 4 sTGC layers: at 273, 303, 333 and 363 cm from IP
- Each layer double sided
 - Provide (diagonal) x-y coordinates
- \bullet Position resolution: less than 100 μm
- location inside Magnet pole tip opening
 - inhomogeneous magnetic field
- Readout: VMM electronics from ATLAS
 - 24000 channels