

First measurements of the jet mass in p+p collisions at \sqrt{s} = 200 GeV at STAR

2222

0000000

Isaac Mooney (Wayne State University) for the STAR Collaboration DNP - Crystal City October 15, 2019

Jets in vacuum

Jets in vacuum

collimated parton shower

Jets in vacuum

Jet finding

Need to link hadronic state (*experiment*) to partonic state (*theory*)

Jet finding algorithm does this!

Infrared, collinear safe \rightarrow theory Recursive clustering

FastJet package provides implementation of k_T family

- we use the standard *anti-k*_T algorithm: IRC safe, insensitive to underlying event, pileup

- requires resolution parameter: we use R = 0.4, vary to 0.2, 0.6

Jets in pQCD

Jet mass

Motivation - Heavy Ion Collisions

Recent ALICE AA measurement: mass is sensitive to differing implementations of partonic energy loss

jet mass ~ virtuality ~

resolution \rightarrow jets with

different masses resolve

Reaching for the Horizon: The 2015 Long Range Plan for Nuclear Science

Motivation - pp Collisions

Measurements done at LHC¹⁻⁷ No measurement yet at RHIC! \rightarrow further tune MCs

Baseline for future AA studies

¹ATLAS, J. High Energ. Phys. 05 (2012) 128
²ATLAS, Phys.Rev.Lett. 121 (2018) no.9, 092001
³ATLAS, tech. rep. ATLAS-CONF-2018-014 (2018)
⁴CDF, Phys.Rev. D 85 (2012) 091101
⁵CMS, J. High Energ. Phys. 05 (2013) 090
⁶CMS, Eur.Phys.J. C 77 (2017) no.7, 467
⁷CMS, J. High Energ. Phys. 10 (2018) 161

The Washington Post

Tuesday, Oct. 15, 2019

STAR measures inclusive jet mass

By JEFF BEZOS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque vehicula euismod ipsum, a molestie Sed lacinia facilisis felis.

Vivamus euismod lorem a feugiat dignissim. Vivamus pulvinar tellus efficitur, aliquam arcu quis, auctor sem. Vestibulum ut elementum ligula, a varius turpis. Quisque fermentum vulputate erat, non egestas tellus laoreet et. Praesent bibendum metus at elit bibendum rutrum ullamcorper a elit. Mauris vel faucibus International Moose Count Underway

By BOB O'BOBSTON

The UN-sponsored International

The Solenoidal Tracker at RHIC (STAR)

Relativistic Heavy Ion Collider (RHIC) collides pp beams at $\sqrt{s} = 200$ GeV

Time projection chamber, (TPC): momenta of **charged** tracks

Barrel electromagnetic calorimeter, (BEMC): **neutral** energy deposits + used as online trigger (Jet Patch: in 1.0x1.0 area in η - ϕ sum of E_T > 7.4 GeV)

Capable of measuring charged & neutral energy in a jet

Jet mass resolution

Jet Mass Scale shift from unity: mostly from track loss Phys.Rev. D 100 (2019) no.5, 052005 Jet Mass Resolution pT-independent! Helps the unfolding

Unfolding

Correct for detector effects encompassed by response matrix R with D = RP(D = detector-level, P = particle-level). Matrix inversion to obtain P.

Procedure: Iterative Bayesian from **RooUnfold**.

M dependent on $p_T \rightarrow 2D$ unfolding $\rightarrow 4D$ response

10

Unfolding

Correct for detector effects encompassed by response matrix R with D = RP(D = detector-level, P = particle-level). Matrix inversion to obtain P.

Procedure: Iterative Bayesian from **RooUnfold**.

M dependent on $p_T \rightarrow 2D$ unfolding $\rightarrow 4D$ response

4D jet mass response matrix

10

Systematic uncertainties

Sources include (decreasing magnitude):

 Unfolding (maximum envelope of the following):

- Iteration parameter variation: 2 or 6
- Prior variation: p_T, M spectra varied independently
- Tracking efficiency uncertainty of (-)4%¹
- Hadronic correction variation: from nominal 100%² to 50%
- Tower gain uncertainty of (+)3.8%¹

Total systematic uncertainty is a quadrature sum of the four sources

11

pt scan

From pQCD, jet p_T increase \rightarrow increased phase space to radiate \rightarrow increased mass

pt scan

RHIC-tuned **PYTHIA-6** describes data

pt scan

HERWIG-7 <u>underpredicts</u> and PYTHIA-8 <u>overpredicts</u> (EE4C) (Monash)

SoftDrop grooming

Goal: suppress wide-angle nonperturbative radiation for more direct theory comparison; closer to parton-level

Approach: decluster angularordered splitting tree by removing prongs which fail the criterion

We consider jets with $z_g > 0.1 \ (\beta = 0)$

Groomed mass

Note: p_T panels are *ungroomed* jet p_T

Grooming suppresses non-perturbative effects - in particular, at higher p_T

Groomed mass

Note: p_T panels are *ungroomed* jet p_T

RHIC-tuned **PYTHIA-6** describes data

Groomed mass

Note: p⊤ panels are *ungroomed* jet p⊤

HERWIG-7 underpredicts and PYTHIA-8 overpredicts

Conclusions

First inclusive jet mass measurements at RHIC.

Jet mass increases with increased phase space (jet p_T) and inclusion of more wideangle soft radiation (jet R), consistent with pQCD expectation

SoftDrop groomed mass is observed to be closer to ungroomed parton level mass

RHIC-tuned MC: data is well-described LHC-tuned MC: opportunity for further tuning

Next steps: <u>pAu</u> & <u>AuAu</u>, to study cold & hot nuclear matter effects!

Sudakov structure of jet mass

Sudakov structure of jet mass

Jet production at NLO

MC tunes

PYTHIA-6.4.28: Perugia 2012 tune. "This combination overestimates the inclusive π^{\pm} yields by up to 30% for $p_T < 3$ GeV/c, when compared to the previously published STAR measurements at $\sqrt{s} = 200$ GeV [47,48]. To compensate, a single parameter in the Perugia 2012 PYTHIA tune, PARP(90), was reduced from 0.24 to 0.213. PARP(90) controls the energy dependence of the low-p_T cut-off for the UE generation process."¹

PYTHIA-8.23: Monash tune²

HERWIG-7: LHC-UE-EE-4-CTEQ6L1 underlying event tune³

Note: relatively stable particles are left undecayed until interaction with the detector material in the GEANT-3 simulation. These "stable" particles include $\pi^0, \pi^{\pm}, \eta, K^+, K^0_S, K^0_L, \Sigma^{\pm}, \bar{\Sigma}^{\pm}, \Lambda, \bar{\Lambda}, \Xi^-, \bar{\Xi}^+, \Omega^-, \bar{\Omega}^+$

APS DNP Fall Meeting '19

²Skands, Carrazza, Rojo, Eur.Phys.J. C 74 (2014) no.8, 3024 ³Gieseke, Rohr, Siodmok, Eur.Phys.J. C 72 (2012) no.11, 2225 20

¹STAR Collaboration, Phys.Rev. D 100 (2019) no.5, 052005

Groomed systematics

Systematic uncertainties are reduced from ungroomed case

Quark and gluon fractions

Gluon jets have larger mass than quark jets ($C_A/C_F = 9/4$) Majority of jets are quark-initiated in this kinematic regime

Groomed radial scan

Groomed mean mass less sensitive to radius / pT variation

Groomed radial scan

Isaac Mooney

R = 0.2

R = 0.4

R = 0.6

Groomed radial scan

