

Search for QCD Critical Point: Higher Moments of Net-proton Multiplicity Distributions at RHIC

Xiaofeng Luo (For the STAR Collaboration)

Lawrence Berkeley National Lab(LBNL) University of Science and Technology of China(USTC) DNP Meeting 2010 @ Santa Fe

QCD Phase Diagram

A type of chart to show condition at which thermodynamically distinct phases can occur at equilibrium.

Schematic QCD Phase diagram of Nuclear Matter

Explore the structure of the QCD phase diagram.➢ Map the QCD Phase Boundary.

➢ Find the QCD Critical Point (CP).

Signatures of the QCD Critical Point (CP):
➢ Divergence of the correlation length (ξ) and thermodynamic susceptibilities.

> Non-Gaussian fluctuations.

```
Observable (T, \mu_B):
```

No-monotonic signal is need for CP.

STAR Experimental Method: Heavy Ion Collisions

- > Particle ratio fit with Thermal Model: Chemical freeze out temperature (T) and baryon chemical potential (μ_B).
- J. Cleymans et al, Phys. Rev. C73 (2006) 034905

- > Varying the colliding energy, we can access different region (T, μ_B) on the QCD phase diagram.
- > RHIC Bean Energy Scan Program:
- **> STAR Detector : Large Uniform Acceptance.**

Year	$\sqrt{s_{_{NN}}}$ (GeV)
2010	7.7, 11.5, 39, 62.4, 200 (μ _B Coverage : 20~550 MeV)
2011	6 (?), 18, 27, 200

Good opportunities to search for CP !

STAR Higher Moments: Non-Gaussian Fluctuation Measure

Definition : N: Event by Event Multiplicity Distribution St. Deviation: $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$ Mean: $Y = \langle N \rangle$ **Kurtosis**: $\kappa = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$ $s = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ **Skewness:** Pos. Kurt. 0.7 0.6 0.5 Zero Kurt. 0.4 •.3 Neg. Kurt. 0.2

➢ For Gaussian Distribution, the skewness and kurtosis are equal to zero. Ideal probe of the non-Gaussian fluctuation at CP.

0.1

- 5

- 2

- 1

Positive Skew

Negative Skew

Theoretical Prediction of Higher Moments

(I): Link to Thermodynamics Susceptibilities in Hadron Resonance Gas (HRG) Model and Lattice QCD.

$$\chi_{q}^{2} = \frac{1}{VT^{3}} < \delta N_{q}^{2} >$$

$$\chi_{q}^{3} = \frac{1}{VT^{3}} < \delta N_{q}^{3} >$$

$$\chi_{q}^{4} = \frac{1}{VT^{3}} (<\delta N_{q}^{4} > -3 < \delta N_{q}^{2} >^{2})$$

STAR

 $(\kappa\sigma^2)_q = \chi_q^4 / \chi_q^2$ $(S\sigma)_q = \chi_q^3 / \chi_q^2$

M.Cheng et al, arXiv: 0811.1006 F. Karsch and K. Redlich, arXiv:1007.2581

Experimental measurable net-proton numbers fluctuations can reflect baryon and charge number fluctuations.

(II): Link to Correlation Length (ξ) :

Due to Finite size effects , Finite time and Critical slowing down effects, ξ ~2-3 fm.

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009) C. Athanasiou, M. Stephanov, K. Rajagopal, Phys. Rev. D 82, 074008 (2010)

Y. Hatta et al, PRL 91, 102003 (2003)

QCD Based Model: $< (\delta N)^2 > \approx \xi^2, < (\delta N)^3 > \approx \xi^{4.5}$ $< (\delta N)^4 > -3 < (\delta N)^2 >^2 \approx \xi^7$ Higher Order Moments with Higher Sensitivity.

5

Higher Moments of Net-proton Distributions

➢ TPC dE/dx: Clean Proton and Anti-proton Identification at 0.4<pT<0.8 (GeV/c),|y|<0.5.</p>

> Various moments of net-proton distributions vary with number of participants.

Moments Product of Net-proton Distributions

Moment products of net-proton distribution are directly related to the baryon number susceptibility ratio and sensitive to the correlations length.

Kurtosis*Variance: No energy dependence and small system size dependence. Skewness*Sigma: With energy dependence and small system size dependence. **STAR** Excitation Function of S σ and $\kappa \sigma^2$ for Central Net-proton Distributions

➤ Currently, the STAR Au+Au high energy data are agreement with Lattice QCD and HRG model. Analysis is on going for √s=11.5 and 7.7 GeV.

- F. Karsch and K. Redlich, arXiv:1007.2581
- R. Gavai & S. Gupta arXiv:1001.3796

- Higher moments of net-proton distributions are sensitive to QCD critical point related non-Gaussian fluctuations and correlation length.
- ➤ Higher moments and moment products of net-proton distributions are presented for STAR Au+Au data with colliding energy down to √s=19.6 GeV.
- Moment products of Sσ and κσ² for Net-proton distributions are found to be consistent with Lattice QCD and HRG model for high energy data. Looking for non-monotonic signature for CP at lower energy (√s=11.5, 7.7 GeV...).