

Forward di-hadron correlation study at STAR

Xuan Li for the STAR Collaboration

Outline

- Motivation
 - How sharp is the transition from dilute parton gas to saturated parton density: eg. Color Glass Condensate (CGC)?
- Forward π^0 and associated jet-like cluster correlations at STAR
 - Event reconstruction
 - Correlation results in p+p and centrality dependent d+Au collisions.
- Summary

How to probe low x gluons

• Forward particle production.

- Large rapidity $(\eta_{\pi} \sim 4)$ inclusive π production and correlations probe asymmetric partonic collisions.
- Mostly high- x_q valence quark (x>0.2) + low- x_g gluon (x<0.01).
- Forward back-to-back correlations can probe low x gluon.

• We use the data of run8 p+p and d+Au collision at $\sqrt{s} = 200$ GeV.

Motivation

• Suppression of forward π^0 + forward π^0 back-to-back correlations found in central d+Au collisions.

- Do the phenomenon exist in other forward correlations?
- Look at the π^0 +jet-like cluster correlations.
- How sharp is the transition from dilute parton gas to Color Glass Condensate (CGC)?
- Reconstruct associated jet-like cluster in different pseudo-rapidity region. Xuan Li 5

π^0 reconstruction in the FMS

Leading forward π^0 is reconstructed in the most forward ulletFMS photon pair mass in p+p collision

There are clear π^0 peaks in the FMS during p+p and d+Au ulletcollisions. DNP2012 Xuan Li

Jet-like cluster reconstruction in the EEMC

• The jet-like cluster are reconstructed based on cone algorithm.

One event of the energy deposition in the EEMC with FMS π^0 trigger(p_t>2.0GeV/c) in p+p collision at \sqrt{s} = 200GeV.

The EEMC energy deposition is jetty. Study π^0 +jet-like cluster correlations.

- **Energy E**_{jet}: $E_{jet} = \Sigma E_{Ti_{j}} E_{Ti}$ is the energy of tower i.
- Mass M_{jet} : (1) Assuming tower hits are zero mass. Projecting T_i energy to its center to get the momentum vector of the tower p_{Ti} . (2) The jet-like momentum vector $p_{jet} = \Sigma p_{Ti}$. (3) $M_{jet} = \operatorname{sqrt}(E_{jet}^2 - \eta P_{jet}^2)$.

New: FMS (π^0)-FMS (jet-like cluster) correlations

Centrality dependence of π^0 +jet-like cluster azimuthal correlations in FMS

- Mixed-event corrections applied, resulting in ~15% bin-to-bin changes.
 - Use beam-beam counter facing Au beam to select peripheral ($\Sigma Q < 250$) and central (2000 < $\Sigma Q < 4000$) collisions.
- No evidence of away-side peak for central d+Au collisions.

•
$$\sigma_{dAu(peripheral)} - \sigma_{pp} = 0.25 \pm 0.10$$

New: FMS (π^0)-EEMC (jet-like cluster) correlations

 $P_{T}(FMS) > 2.0 \text{ GeV/c}$; 1.0 GeV/c < $P_{T}(EEMC) < P_{T}(FMS)$

New: FMS (π^0)-BEMC (jet-like cluster) correlations

$P_{T}(FMS) > 2.0 \text{ GeV/c}$; 1.0 GeV/c < $P_{T}(BEMC) < P_{T}(FMS)$

Central d+Au $\rightarrow \pi^0$ + jet-like +X, \sqrt{s} =200GeV

- FMS π⁰ p_t^{FMS}>2.0GeV/c. With 400MeV tower threshold, cone R=0.6, BEMC jet-like cluster (M>0.2GeV/c²) -0.9<η<0.9, 1.0GeV/c<p_t^{BEMC}<p_t^{FMS}.
- Mixed event corrections applied to the correlations. Use beam-beam counter facing Au beam to select peripheral (ΣQ<250) d+Au collisions.

$$\sigma_{dAu(peripheral)} - \sigma_{pp} = -0.03 \pm 0.02 , \quad \sigma_{dAu(central)} - \sigma_{pp} = 0.08 \pm 0.04$$

Summary on the correlation peak

- Does the evolution of results in assoc particle n indicate a \bullet smooth transition?
- Studies relating jet-like cluster energy to parton energy are • underway. DNP2012 11

Summary

- Centrality dependence of both forward di-pions and forward pion + forward jet-like clusters in d+Au show correlations for peripheral collisions but not for central collisions.
- Correlations between a leading forward π⁰ and a jet-like cluster over a broad pseudo-rapidity range -1<η<4,
 - ✓ p+p correlations become narrower as η increases.
 - ✓ peripheral d+Au correlations become broader as η increases.
- The rapidity dependences of the correlations suggest a smooth transition process from dilute parton gas to dense CGC state.
 - ✓ Studies of the energy scale for the jet-like cluster from different detectors are ongoing.

Backup

The soft gluon x is related to associated particle in correlations

 The pseudo-rapidity of the associated particle is strongly correlated with soft gluon x in the asymmetric parton scattering.

Outlook of nucleus gluon saturation study

The final state π^0 s or jet-like clusters are complex objects that can include not only color interactions from initial states but also from final states.

• A Electron Ion Collider (EIC)?

- Go to lower x than fixed target experiment.
- DIS process is much cleaner than the hadron-hadron interaction.

Summary on the correlation peak

 Compare the width differences from p+p to d+Au collisions for different di-hadron correlations.

p,(Leading)>2.0GeV/c,1.0GeV/c<p.(associated)<p.(Leading) p_(Leading)>2.5GeV/c,1.5GeV/c<p_(associated)<p_(Leading) **Correlation width difference Correlation width difference** $\pi^{0} + \pi^{0}$ (stat. error only) [ArXiv:1102.0931] $\pi^{0}+\pi^{0}$ (stat. error only) [ArXiv:1102.0931] 0.8 0.8 π^0 +jet-like cluster π^0 +jet-like cluster systematical error 0.6 0.6 systematical error 0.4 0.4 **STAR Preliminary STAR Preliminary** 0.2 0.2 0 0 0.003<x<0.02 -0.2 0.003<x<0.02 0.008<x<0.0 0.0009<x<0.005 -0.2 0.008<x<0.0 0.0009<x<0.005 -0.4 2 3 -0.4 0 1 2 3 0 1 associated particle n associated particle n

Low p_t

High p_t

Back-to-back Angular Correlations

CGC predicts suppression of back-to-back correlation

Conventional shadowing changes yield, but not angular correlation