Di-Jet Analysis of Polarized Proton-Proton Collisions at $\sqrt{s} = 500$ GeV at STAR

Grant Webb For the STAR Collaboration University of Kentucky Oct 27,2012

Motivation: Proton Spin Puzzle

rized pp collisions at RHIC

$$\frac{1}{f_{a}} \propto \frac{\Delta f_{a} \Delta f_{b}}{f_{a} f_{b}} \hat{a}_{LL}$$

on distribution functions

Reconstructing Di-jets provide access to the initial partonic kinematics at LO

Jet direction

$$x_{1} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_{3}} + p_{T4} e^{\eta_{4}} \right)$$
$$x_{2} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{-\eta_{3}} + p_{T4} e^{-\eta_{4}} \right)$$
$$M = \sqrt{x_{1} x_{2} s}$$
$$\cos \theta^{*} = \tanh \left(\frac{\eta_{3} + \eta_{4}}{2} \right)$$

 Δa

Dijet Cross Section at $\sqrt{s} = 500$ GeV

- The di-jet cross section provides an essential check for the experiment.
- The Dijet cross-section was found to be in good agreement with NLO pQCD theory at $\sqrt{s} = 200 \text{ GeV}$
- Measuring the cross-section at 500 GeV will allow STAR to:
 - Test the behavior of a new Jet Algorithm (anti-Kt versus midpoint cone)
 - Study the effects of increased backgrounds and pileup
 - Understand trigger inefficiencies
 - Study detector response and calibration
 - Verify that we understand our observables and can use them in asymmetry measurements

Tai Sakuma, Thesis, MIT (2010)

Run 9 pp500 MC Sample

- The goal of this MC sample is to properly account for
 - Inefficiencies
 - Trigger
 - Vertex
 - Fiducial
 - Resolutions
- An Embedding Simulation Sample of 83M thrown events
 - Embed pythia MC particles/tracks into zero bias triggered events from data
 - Perugia 0 TUNE 320
- Detector backgrounds (pile-up) are not capable of being properly simulated.
- Two Filters used:
 - Di-jet Pythia-level Filter
 - Improves signal extraction
 - Trigger Reconstruction level Filter
 - Reduced CPU time

Event Selection

- 2009 Data collect
 ~10pb⁻¹ with an average polarization of ~40%
- Jet Patch (JP): Division of the BEMC into 18 regions (1x1 in ηxφ space) each containing 400 towers

- Triggers
 - Three Triggers examined:
 - JP1: $E_T \ge \sim 8.3 \text{GeV}$
 - <u>JP2: E_T ≥ ~13.0GeV</u>
 - AJP: E_T ≥ ~ 6.4 GeV for two adjacent jet patches
 - Geometric Trigger:
 - Requiring a jet to be located near a JP

- Require # jets ≥ 2
 - Require | Z vertex | ≤ 50 cm

Same side jet demonstrates trigger bias

Selecting Di-jet Events

Run 9 500GeV Jet Data/Simulation Comparison

Nice agreement between data and simulation in Run 9

$$M_{inv} = \sqrt{2p_{T3}p_{T4} \left(\cosh(\Delta \eta) - \cos(\Delta \phi)\right)}$$

*ignoring jet mass

Summary

- Constraint of the parton kinematics and the shape of $\Delta g(x)$ at lower x is provided by examining correlation measurements at $\sqrt{s} = 500$ GeV
- The Di-jet cross-section analysis motivates STAR's abilities to measure asymmetries at this higher energy.
- The data/MC comparisons are well matched and can be used for data inefficiencies and resolutions corrections.
- Calculate the Dijet cross-section and evaluate the full systematics.

Back-up

Outline

\diamond Concise Motivation

\diamond BNL and the STAR experiment

♦ Di-Jet Cross-section Analysis

♦ Data/Simulation Comparisons

Anti-Kt Algorithm

Two Distances:

d_{ij} =distance between entities i and j d_{iB} = distance between i and the beam

Then cluster proceeds by identifying the smallest of the distances. I

If it is a d_{ij} recombine entities i and j

If it is d_{iB} call i a jet and removing it from the list of entities.

The distances are recalculated and the procedure repeated until no entities are left. $d_{ij} = \min\left(\frac{1}{k_{ii}^2}, \frac{1}{k_{ij}^2}\right) \frac{\Delta_{ij}^2}{R^2} \qquad R = 0.6$

$$k_{iB}^{2} = (y_{i} - y_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$$
¹⁸