Di-Jet Analysis of Polarized Proton-Proton Collisions at $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$ at STAR

Grant Webb
For the STAR Collaboration University of Kentucky

Oct 27,2012

Motivation: Proton Spin Puzzle

Polarized DIS experiments determined the quark contribution to the spin of the proton is $\sim 30 \%$.

$$
\frac{1}{2} \Delta \Sigma+L_{q}+\Delta G+L_{g}=\frac{1}{2}
$$

No RHIC Data

RHIC Data Included

Polarized pp collisions at RHIC

$$
A_{L L}=\frac{\sigma^{++}-\sigma^{+-}}{\sigma^{++}+\sigma^{+-}} \propto \frac{\Delta f_{a} \Delta f_{b}}{f_{a} f_{b}} \hat{a}_{L L}
$$

$\Delta f:$ polarized parton distribution functions
Reconstructing Di-jets provide access to the initial partonic kinematics at LO

$$
\begin{gathered}
x_{1}=\frac{1}{\sqrt{S}}\left(p_{T 3} e^{\eta_{3}}+p_{T 4} e^{\eta_{4}}\right) \\
x_{2}=\frac{1}{\sqrt{s}}\left(p_{T 3} e^{-\eta_{3}}+p_{T 4} e^{-\eta_{4}}\right) \\
M=\sqrt{x_{1} x_{2} s} \\
\cos \theta^{*}=\tanh \left(\frac{\eta_{3}+\eta_{4}}{2}\right)
\end{gathered}
$$

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

The Dijet $A_{t L}$ at 500 GeV is sensitive to lower x values and therefore provides information on $\Delta \mathrm{G}$ in a new kinematic regime

Dijet Cross Section at $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$

- The di-jet cross section provides an essential check for the experiment.
- The Dijet cross-section was found to be in good agreement with NLO pQCD theory at $\sqrt{s}=200 \mathrm{GeV}$
- Measuring the cross-section at 500 GeV will allow STAR to:
- Test the behavior of a new Jet Algorithm (anti-Kt versus midpoint cone)
- Study the effects of increased backgrounds and pileup
- Understand trigger inefficiencies
- Study detector response and calibration
- Verify that we understand our
 observables and can use them in asymmetry measurements

Tai Sakuma, Thesis, MIT (2010)

Tai Sakuma, Thesis, MIT (2010)

Tai Sakuma, Thesis, MIT (2010)

Tai Sakuma, Thesis, MIT (2010)

Run 9 pp 500 MC Sample

- The goal of this MC sample is to property account for
- Inefficiencies
- Trigger
- Vertex
- Fiducial
- Resolutions
- An Embedding Simulation Sample of 83 M thrown events
- Embed pythia MC particles/tracks into zero bias triggered events from data
- Perugia 0 TUNE 320
- Detector backgrounds (pile-up) are not capable of being properly simulated.

- Two Filters used:
- Di-jet Pythia-level Filter
- Improves signal extraction
- Trigger Reconstruction level filter
- Reduced CPUtime

Event Selection

- 2009 Data collect ~10pb-1 with an average polarization of $\sim 40 \%$
- Jet Patch (JP): Division of the BEMC into 18 regions (1×1 in $\eta \times \phi$ space) each containing 400 towers

- Triggers
- Three Triggers examined:
- IP1: $\mathrm{E}_{\mathrm{T}} \geq \sim 8.3 \mathrm{GeV}$
- $1 \mathrm{P2} \mathrm{E}_{\mathrm{F}} \geq \sim 13.0 \mathrm{GeV}$
- AJP: $\mathrm{E}_{\mathrm{T}} \geq \sim 6.4 \mathrm{GeV}$ for two adjacent jet patches
- Geometric Trigger:
- Requiring a jet to be located near a 1 P
- Require \# jets ≥ 2
- Require \mid Z vertex $\mid \leq 50 \mathrm{~cm}$
- Same side jet demonstrates trigger bias

Selecting Di-jet Events

- Select the highest two pT jets
- Apply the asymmetric jet pT cut: $\max \left(\mathrm{pT}^{\mathrm{T}} 1, \mathrm{pT} 2\right)>13(\mathrm{GeV} / \mathrm{c})$ and $\min \left(\mathrm{p}^{2} 1, \mathrm{pT} 2\right)>10(\mathrm{GeV} / \mathrm{c})$
- Require \mid jet $\eta \mid<0.8$
- Require $\mid \operatorname{det}$ jet $\eta \mid<0.7$
- Require one jet to have $\mathrm{R}_{\mathrm{T}}<0.95$
- $\Delta \phi \geq 2.0$ for back to back jets
- Calculate the invariant mass of the two jets

Run 9500 GeV Jet Data/Simulation Comparison

Nice agreement between data and simulation in Run 9

$$
M_{i n v}=\sqrt{2 p_{T 3} p_{T 4}(\cosh (\Delta \eta)-\cos (\Delta \phi))}
$$

10^{-1}
\times^{1}
10^{-2}

10^{-3}

10^{-3}

Summary

- Constraint of the parton kinematics and the shape of $\Delta g(x)$ at lower x is provided by examining correlation measurements at $\sqrt{s}=500 \mathrm{GeV}$
- The Di-jet cross-section analysis motivates STAR's abilities to measure asymmetries at this higher energy.
- The data/MC comparisons are well matched and can be used for data inefficiencies and resolutions corrections.
- Calculate the Dijet cross-section and evaluate the full systematics.

Backup

Outline

\diamond Concise Motivation
\triangleleft BNL and the STAR experiment
\triangleleft Di-Jet Cross-section Analysis
\triangleleft Data/Simulation Comparisons

Relativistic Heavy Ion Collider (RHIC)

Anti-Kt Algorithm

Two Distances:
$\mathrm{d}_{\mathrm{ij}}=$ distance between entities i and j
$\mathrm{d}_{\mathrm{i}}=$ distance between i and the beam
Then cluster proceeds by identifying the smallest of the distances. I
If it is a d_{ij} recombine entities i and j
If it is $d_{i B}$ call i a jet and removing it from the list of entities.
The distances are recalculated and the procedure repeated until no entities are left.

$$
\begin{aligned}
& d_{i j}=\min \left(\frac{1}{k_{t i}^{2}}, \frac{1}{k_{t j}^{2}}\right) \frac{\Delta_{i j}^{2}}{R^{2}} \quad R=0.6 \\
& d_{i B}=\frac{1}{k_{t i}^{2}} \\
& \Delta_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
\end{aligned}
$$

