

Dijet Analysis of Polarized Proton - Proton Collisions at ∫s = 510 GeV at STAR

Suvarna Ramachandran For the STAR Collaboration University of Kentucky

Motivation: Proton Spin Puzzle

Polarized DIS experiments determined the quark contribution to the spin of the proton is ~30%.

$$\frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g = \frac{1}{2}$$

Relativistic Heavy Ion Collider

 $\vec{n}\vec{n}$

Solenoidal Tracker At RHIC

 $\eta = -\ln[\tan(\Theta/2)]$

Dijet Analysis at 510 GeV

- What are jets?
- Inclusive jets, Dijets
- Why dijets?

- Reconstructing dijets give access to initial partonic kinematics

$$x_1 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_3} + p_{T4} e^{\eta_4} \right) \qquad x_2 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{-\eta_3} + p_{T4} e^{-\eta_4} \right)$$

Dijet Analysis at 510 GeV

• Why dijets at 510 GeV ?

- The dijet A_{LL} at 510 GeV is sensitive to lower x values thus providing information on ΔG in a new kinematic regime.

Jet Reconstruction

MidPoint Cone Algorithm

- Aggregate of all entities that lie within a certain R in the η - ϕ plane, starting with a seed

Anti kT Algorithm

- Aggregated on the basis of inverse momentum of each entity

- Less susceptible to pileup
- Smaller underlying event contributions
- IR and Collinear safe to all orders

JHEP 0804 063(2008)

Dijet Cross section results for 510 GeV

Run 2012 510 GeV data

Projected dijet A_{LL} sensitivities from combined Rum12 + Run 13 data

Summary

- Quark contribution to proton spin has been well constrained by DIS experiments
- During the past decade, RHIC has significantly reduced the uncertainties on ΔG
- Way to move forward analyzing 510 GeV dijets, thus accessing lower x
- Dijet Cross Section was measured and shows good agreement with theory
- The dijet A_{LL} analysis for 2012 is ongoing