Rapidity Density Distributions of Identified Protons from the RHIC BES at STAR

Christopher E. Flores

(University of California, Davis) For the STAR Collaboration

APS | Division of Nuclear Physics

Fall Meeting 2016 Vancouver, BC | Canada

Beam Energy Scan Motivation and Outline

Study of the QCD Phase Diagram

- Search for Critical Point
- Search for Phase Transition
 Phenomena Softening of EOS
- Baryon Stopping

In this Talk

- Event Selection
- Particle Identification
- Transverse Mass Spectra and dN/dy Extraction
- Rapidity Density Distributions
- Summary

STAR | Event Selection

Z-Vertex Selection:

- 7.7 GeV : |V_z| < 50 cm
- All Others: |V_z| < 30 cm

Radial Vertex Selection:

- 14.5 GeV: |V_R| < 0.5 cm
- All Others: |V_R| < 2.0 cm

Centrality:

- Nine Bins
- Glauber MC + Neg. Bin. Particle Production Model

STAR | Particle Identification

Particle Identification:

- Energy loss in TPC
- Time of flight in TOF
- Excellent PID throughout $y_p = [-0.65, 0.65]$

Tracks are binned by:

- Event centrality
- Rapidity | bin width = 0.1
- Transverse mass | bin width = 0.025 GeV/c²

Proton Transverse Mass Spectra

Spectra are Corrected for:

- Energy loss in the detector material
- Finite bin width
- Tracking efficiency
- "Knockout" proton background

Spectra are Fit with:

- Boltzmann function above m_{T} - $m_{0} = 0.3 \text{ GeV/c}^{2}$
- Ignores radial flow effects
- More sophisticated Blast Wave model will be used in future

Proton Spectra | Au+Au at $\sqrt{s_{NN}}$ = 7.7 GeV

STAR

Proton Spectra | Au+Au at $\sqrt{s_{NN}}$ = 11.5 & 14.5 GeV

Proton Spectra | Au+Au at √s_{NN}= 19.6 & 27.0 GeV

Proton Spectra | Au+Au at $\sqrt{s_{NN}}$ = 39.0 & 62.4 GeV

BES Proton Rapidity Density Distributions

- dN/dy obtained by integrating Boltzmann Fits in m_T - $m_0 = [0,10] \text{ GeV/c}^2$
- Errors are statistical only

$\sqrt{s_{NN}}~({ m GeV})$	7.7	11.5	14.5	19.6	27.0	39.0	62.4
μ_B (MeV)	420	315	260	205	155	115	70

STAR BES-I White Paper

Christopher E. Flores October 14, 2016

- Large gap between 7.7 and 11.5 consistent with large difference in baryon chemical potential (µ_p)
- Evolution of 7.7 GeV structure with centrality suggests baryon deflection in peripheral collisions

STAR

Conclusions and Future Work

• STAR has extracted the transverse mass spectra of identified protons:

- For Au+Au collisions at BES energies at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27.0, 39.0, and 62.4 GeV
- Differentially in about one unit of rapidity and in nine centrality bins
- The spectra have been used to obtain preliminary rapidity density distributions via a simple Boltzmann function model.
- A full blast wave model using simultaneous fits to π⁺⁻, k⁺⁻, p, and p
 spectra will be used in the future to extract the p and p yields:
 - Will account for the effect of radial flow
 - Will result in net proton rapidity density distributions