



# Chiral magnetic effect search in p+Au, d+Au and Au+Au collisions at RHIC

#### Jie Zhao (for the STAR collaboration) Oct. 27 2017

Purdue University, West Lafayette



- Chiral Magnetic Effect (CME)
- CME in small systems
- Results in p/d+A and A+A collisions
- Identification of backgrounds and

possible CME

Summary



## **Chiral Magnetic Effect (CME)**

D. Kharzeev, etc. NPA 803, 227(2008)



 $j_V = \frac{N_c e}{2\pi^2} \mu_A B$ ,  $\square$  electric charge separation alone the B field

Configuration with non-zero topological charge  $(Q_w)$  converts left (right)handed fermions to right (left)-handed fermions, generating electric current along B direction and leading to electric charge separation

## Harmonic planes in small systems

CMS collaboration, PRL 118(2017)122301; R. Belmont and J.L. Nagle, arXiv:1610.07964v1



 $\Psi_2$ : second-order event plane;  $\Psi_1$ : first-order event plane

related to flow background

- $\blacktriangleright$   $\Psi_1$  related to the magnetic direction (B), useful for CME signal
- >  $\Psi_1$  and  $\Psi_2$  correlated in A+A, signal and background entangled
- >  $\Psi_1$  and  $\Psi_2$  not correlated in p+A, d+A, signal and background disentangled

 $\Psi_2$  related to flow,

## Multiplicity dependence in small systems



 $N(\alpha/\beta)$  represents the charged (+/-) particle multiplicity used for the correlator

Sizeable charge dependent signal in small system p+Au and d+Au collisions with respect to second-order event plane Ψ<sub>2</sub>
v<sub>2</sub>{2} with η gap of 1.0



#### **Multiplicity dependence**



> Background expectation: N dilution, proportional to flow  $v_2$ {2}

- Right plot: if intrinsic particle pair-wise correlation is independent of N, background scenario would yield a constant as a function of N
- With topological charge sign fluctuations and magnetic field direction fluctuations, CME might yield different multiplicity dependence



#### **Resonance decay background**



## Identify resonance bkg. by invariant mass



- AMPT has no CME, only background
- > AMPT show resonance structure in  $\Delta \gamma$  as function of mass
- At large mass with smaller abundance difference between the unlike-sign and like-sign pairs, Δγ is consistent with zero

### Identify resonance bkg. by invariant mass



DNP2017, Pittsburgh





| Centrality | All (A)        | M>1.5 (B)     | B/A        |
|------------|----------------|---------------|------------|
| 50-80%     | (7.45±0.21)E-4 | (1.3±5.7)E-5  | (1.8±7.6)% |
| 20-50%     | (1.82±0.03)E-4 | (7.7±9.0)E-6  | (4.3±4.9)% |
| 0-20%      | (3.70±0.67)E-5 | (-0.1±1.8)E-5 | (-3.8±49)% |

- Resonance contribution of unlike minus like sign pairs decreases with increasing mass
- > At m>1.5 GeV/c<sup>2</sup>,  $\Delta \gamma$  is consistent with zero

### Identify resonance bkg. and possible CME



Data are fitted with constant and exponential CME assumptions in mass
In the current approach, the statistical uncertainty is dominant



- > With respect to  $\Psi_2$ : p+Au and d+Au charge dependent correlations are background. Peripheral Au+Au data are similar to that of p+Au and d+Au
- The scaled correlators from peripheral to mid-central Au+Au collisions are approximately constant over multiplicity. These data do not currently allow conclusive statements to be made regarding the presence of the CME
- > Identify resonance bkg. by the **invariant mass**
- > At m>1.5 GeV/c<sup>2</sup>,  $\Delta \gamma$  is consistent with zero within uncertainty
- > Observation of resonance structure in  $\Delta \gamma$  at m<1.5 GeV/c<sup>2</sup>. Two component fit is used to isolate the possible CME from bkg.