Measurement of transverse single-spin asymmetries for dijet production in polarized p+p collisions at $\sqrt{s} = 200$ GeV at STAR

Huanzhao Liu, for the STAR Collaboration Center for Exploration of Energy and Matter, Indiana University

DNP 2020

Oct. 30, 2020

Supported in part by

The Sivers Effect in pp Dijet Production

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma$$
 Quark polarization: ~30% contribution

Gluon polarization : comparable to $\Delta \Sigma$, less well constrained

Orbital angular momentum (OAM): largely unconstrained

• The parton OAM can be manifested via the <u>Sivers Effect</u>, a spin-dependent average transverse momentum:

+ $(\sum_{a} \mathcal{L}_{a} + \mathcal{L}_{g})$

$$\left\langle \overrightarrow{S}_{proton} \cdot (\overrightarrow{p}_{proton} \times \overrightarrow{k}_{T}) \right\rangle \neq 0$$

- The *u*-quark \vec{k}_T and the *d*-quark \vec{k}_T are expected to be opposite in sign and different in magnitude.
- The Sivers effect can be measured in dijet production by examining the <u>tilt in the back-to-back dijet opening angle</u>.

- Measuring the Sivers effect in dijet production :
 - Non-zero effects indicate possible contributions from partonic angular momentum to the proton spin.
 - Test the expected features of the Sivers effect (sign, magnitude) for flavor-separated partons
 - Help constraining the Sivers function, and explore the Sivers effect at a larger Q² scale than SIDIS

RHIC & STAR Detector

Relativistic Heavy Ion Collider

Solenoidal Tracker At RHIC

- RHIC colliding transversely and longitudinally polarized pp at different energies (200, 500, 510 GeV, etc).
- STAR detector is capable of reconstructing tracks, identifying charged particles in $|\eta|$ < 1.3, and measuring EM particle energies in -1< η < 2.

Observable for Probing the Sivers Effect in Dijet Event

The Sivers asymmetry can be probed via the signed opening angle ζ .

Definition of ζ

 $\zeta > \pi$ when $cos(\phi_b) > 0$ $\zeta < \pi$ when $cos(\phi_b) < 0$ where ϕ_b is dijet bisector angle

Extraction of asymmetry

The Sivers effect leads to a spin-dependent centroid shift of ζ , so we define the asymmetry as:

$$\Delta \zeta = \frac{\langle \zeta \rangle^+ - \langle \zeta \rangle^-}{P}$$

where $\langle \zeta \rangle^{+/-}$ is the centroid of ζ for spin-up and spin-down states, and P is the beam polarization.

Beam-to-Jet Association

- To figure out the "parton flow" from beam to jets, a beam-jet association is performed.
- We assume the more forward jet (largest $|\eta|$) is associated with a fragmenting parton from the beam moving in that direction.

Beam-jet Association

associated with +z beam in this case

other jet to be associated with the -z beam

Jet Charge Tagging

We use the **Jet Charge (Q) of the associated jets** to enhance the fraction of u-quarks and d-quarks separately.

$$Q = \sum_{\substack{\text{all the tracks} \\ \text{with } p_{_T} > 0.8 \text{ GeV/c}}} \frac{\text{track } |p|}{\text{jet } |p|} \cdot \text{track charge}$$

Data is divided into four bins:

- 1. Plus tagging ($Q \ge 0.25$) : enhances u
- 2. Zero+ tagging ($0 \le Q < 0.25$): less enhancement to u
- 3. Zero- tagging (-0.25 < Q < 0): less enhancement to d
- **4.** Minus tagging ($Q \le -0.25$): enhances d

The $\Delta \zeta$ asymmetry

- Large separation ($\sim 5\sigma$) between plus-tagging and minus-tagging.
- First observation of non-zero Sivers asymmetries in dijet production of polarized proton collisions!
- Comparison of asymmetries for the two beams show that the systematic uncertainty is well under control.
- Asymmetry systematically shifting from "+" to "-" values when u quark fraction goes down and d quark fraction goes up.
- η^{total} dependency in plus-tagging, possibly due to:
 - *x*-dependency in PDFs
 - potential x-dependency in Sivers $\langle k_T \rangle$

Converting the $\Delta \zeta$ asymmetry to $\langle k_T \rangle$

Three steps are taken to convert the $\Delta \zeta$ asymmetry to $\langle k_T \rangle$:

- I. Correct detector jet p_T to parton p_T with machine learning.
- II. Use simple kinematic modeling of $\langle k_T \rangle$, calculate $\Delta \zeta$ with corrected p_T , and get $\Delta \zeta \langle k_T \rangle$ correlation.

III. Convert the $\Delta \zeta$ vs. η^{total} results to $\langle k_T \rangle$ vs. η^{total} results :

$$\langle k_T \rangle = \Delta \zeta / slope$$

The Converted $\langle k_T \rangle$ Results

Based on the simple kinematic model, we have :

$$\left\langle k_T^{+tagging} \right\rangle = +6.1 \pm 1.9 \text{ MeV/c}$$
 $\left\langle k_T^{-tagging} \right\rangle = -7.3 \pm 2.2 \text{ MeV/c}$

- Very small signals successfully accessed with STAR detector!
- In fact, each tagged measurement can be considered as a mixture of 3 different partonic contributions (u, d, g+sea). The 4 tagged measurements provide enough constraints to solve for the $\langle k_T \rangle$ for each parton.

Inverting the Tagged $\langle k_T angle$ to Individual Parton $\langle k_T angle$

- The parton fraction is estimated in simulation for each tagged measurement.
- Constructing the system of equations (8X3 matrix):

8 x 3 matrix

- 4 charge-taggings: differentiation between u and d quarks
- Each inversion involves the data from a pair of adjacent η^{total} bins: parton fraction is dependent on η^{total}

The over-constrained system is solved through Moore-Penrose inverse.

3 x 8 matrix

The Unfolded Parton $\langle k_T \rangle$

•
$$\langle k_T^u \rangle > 0$$
, $\langle k_T^d \rangle < 0$, $\langle k_T^{g+sea} \rangle \sim 0$

$$ullet \left| rac{\left\langle k_T^d
ight
angle}{\left\langle k_T^u
ight
angle}
ight| \sim 2$$

- The systematic uncertainty is dominated by the uncertainty of the estimated parton fraction.
- No clear η^{total} -dependency for given statistics, suggesting a relatively weak x-dependency.

Conclusions

- The Sivers effect has been studied in dijets measured with the STAR detector, using data taken in 2012 and 2015.
- First observation of non-zero Sivers asymmetries in polarized proton collisions!
- A conversion of the asymmetry to the $\langle k_T \rangle$ results is provided based on purely kinematic model. The results are further unfolded for the $\langle k_T \rangle$ of individual partons.
- The features of the unfolded parton $\langle k_T \rangle$ are consistent with expectation:
 - $\langle k_T^u \rangle$ and $\langle k_T^d \rangle$ have different signs
 - $|\langle k_T^d \rangle / \langle k_T^u \rangle| \sim 2$
- Results provide constraints for the Sivers function at a high Q^2 scale ($Q^2 > 160 \text{ GeV}^2$).
- Several theoretical efforts are underway to make comparisons to these data.

Thank you!

BACKUP

STAR 2006 Analysis Result & New 2012+2015 Improvements

In the 2006 analysis, the result was found to be consistent with zero within dominant statistical uncertainties.

With data taken in 2012 and 2015, the current analysis sees:

- 33 times larger data set
- Fully reconstructed jets (no tracking for 2006 data)
- Employ a tagging method to enhance u-quark and d-quark signals

STAR Collab. PhysRevLett 99 142003

Asymmetry is plotted as a function of the sum of dijet pseudo-rapidities $(\eta 1 + \eta 2 \propto \ln(\frac{x_1}{x_2}))$ since Sivers effect is expected to be dependent on parton x.

Parton *x*

- $Q^2 > 160 \text{ GeV}^2$
- Parton x increases along with η^{total} , a possible x-dependence of $\langle k_T \rangle$ should manifest in the inverted results if strong enough.

