Longitudinal Double-Spin Asymmetries for Dijet Production at Intermediate Pseudorapidity in Polarized Proton-Proton Collisions at $\sqrt{s} = 510$ Gev

> Joseph Kwasizur, for the STAR Collaboration Indiana University, Center for Exploration of Energy and Matter

> > DNP 2020 Oct. 30, 2020

Gluon Contribution to Proton Spin

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- The spins of the quarks $(\frac{1}{2}\Delta\Sigma)$ contribute ~30% of the total spin of the proton
- Gluon contribution $\Delta G = \int \Delta g(x) dx$ less well constrained, especially at low x

• Inclusion of 2009 STAR data to global fits gave a non-zero value of ΔG for the first time

DNP 2020 - Oct. 30, 2020 - Joseph Kwasizur

RHIC and the STAR Detector

- The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the first and only particle accelerator capable of colliding polarized protons
- Collides transversely or longitudinally polarized protons at center-of-mass energies of (typically) 200 GeV and 510 GeV

- The Solenoidal Tracker at RHIC (STAR) features charged particle tracking and electromagnetic calorimetry
- Time Projection Chamber (TPC) provides tracking for $|\eta| < 1.3$
- Barrel (BEMC) and Endcap (EEMC) Electromagnetic Calorimeters measure EM particle energies for
 - $-1 < \eta < 2$

Probing Gluon Polarization at RHIC

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c} \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}^{f_a f_b \to f_c X} \cdot \hat{a}_{LL}^{f_a f_b \to f_c X} \otimes D_{f_c}^h}{\sum_{a,b,c} f_a \otimes f_b \otimes d\hat{\sigma}^{f_a f_b \to f_c X} \otimes D_{f_c}^h}$$

- Quantity of interest is longitudinal double-spin asymmetry A_{LL}
- Spin-dependent cross-• sections for partonic scattering processes are well determined in perturbative QCD
- For RHIC energies, *qq* and • *qg* are the dominant partonic scattering processes, making A_{LL} sensitive to gluon polarization

C

Dijet Kinematics

 $|\cos \theta^*| = \tanh |$

- Dijets are correlation measurements which capture more information on the hard-scattered outgoing partons, making them more sensitive to the initial state parton kinematics
- Forward rapidity jets ($\eta > 1$) arise from asymmetric partonic collisions, allowing access to low-*x* region where gluon contribution to proton spin is poorly constrained
- Can also increase collision center-of-mass energy to probe lower x gluons

Challenges at Forward Rapidity

- Less tracking information also leads to biased sample of jets
- Jets with high percentage of neutral energy will be preferentially selected in the EEMC

- TPC efficiency decreases in forward region
- Fewer tracks means reconstructed jets have lower p_T on average

Machine Learning Correction

- Supervised regression algorithm: Multilayer Perceptron (MLP)
- Algorithm is trained on simulation, using detector level p_T, detector η, and neutral fraction as input information
- Corrects detector level p_T and jet invariant mass back to particle level on a jet-by-jet basis
- Trained network is then applied to data

Dijet Asymmetry Results, 2012

- Machine learning correction is trained and applied separately for three different dijet topologies
- Corrected jet transverse momenta and masses are used to calculate dijet invariant mass
- Error bars are statistical; calculation of systematic uncertainties is ongoing
 - Systematics separated into two categories: uncertainties on dijet invariant mass and uncertainties on A_{LL}
 - Dominant systematics expected to be Jet Energy Scale uncertainty and Pythia tune uncertainty
 - Systematic uncertainties are expected to be smaller than statistical errors at all points

False Asymmetries

• Dijet false asymmetries provide checks on analysis, and are expected to be consistent with zero within statistical precision

Comparison with Previous Results

- First measurement of forward dijet A_{LL} , using data from 2009 RHIC run at \sqrt{s} = 200 GeV, was published in 2018
- Data taken at different center-ofmass energies can be compared by plotting asymmetries as a function of dijet invariant mass scaled by \sqrt{s}
- Lower kinematic reach in M/\sqrt{s} of 510 GeV data allows one to probe lower initial-state partonic momentum fractions
- Green boxes on 2009 data show systematic uncertainties
 - Expect 2012 systematics to be comparable

Impact of 2013 Data

• Reduced error bars on red points (plotted at zero) illustrate the projected statistical impact of including data from the 2013 RHIC run at $\sqrt{s} = 510$ GeV

Conclusion

- Forward dijet A_{LL} at \sqrt{s} = 510 GeV has been measured for the first time, using data from the 2012 RHIC run
- Calculation of systematic uncertainties is underway
 - Based on results of previous dijet analyses, systematic uncertainties expected to be smaller than statistical uncertainties
- 2013 dataset will provide approximately three times the statistics to further constrain low-*x* behavior of $\Delta g(x)$

Backup

Jet Reconstruction

- Large acceptance of STAR makes it ideal for jet measurements
- Anti-k_T algorithm for jet reconstruction
- Successive recombination method, with radius R = 0.6 in $\eta - \phi$ space:

$$d_{ij} = \min\left(\frac{1}{k_{Ti}^{2}}, \frac{1}{k_{Tj}^{2}}\right) \frac{\Delta R_{ij}^{2}}{R^{2}}$$
$$d_{iB} = \frac{1}{k_{Ti}^{2}}$$

 Pythia simulates parton scattering and hadronization, GEANT simulates detector response

$$A_{LL} = \frac{1}{P_Y P_B} \left[\frac{(N^{++} + N^{--}) - R_3 (N^{+-} + N^{-+})}{(N^{++} + N^{--}) + R_3 (N^{+-} + N^{-+})} \right]$$

- P_{γ} , P_{B} : polarizations of the proton beams
- R₃ = L⁺⁺+L⁻⁻/L⁺⁻⁺: relative luminosity
 N^{±±}: spin-sorted yields for different beam polarization configurations

