

φ-meson Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 3.0 GeV from STAR

Guannan XIE (for the STAR Collaboration) Lawrence Berkeley National Laboratory Oct.29 – Nov. 1, 2020 DNP 2020, Virtual Meeting

Office of Science

Motivation

- ϕ meson ($s\bar{s}$) has a small hadronic cross section.
- The strange hadron yield and ratios may be sensitive to the strangeness production mechanism.
- Grand canonical ensemble (GCE) and canonical ensemble (CE) calculations are quite different at low energy.

HADES:

Phys. Lett. B 778, 2018.403-407, Phys. Rev. C. 80.025209. (2009) E917: Phys. Rev. C. 69.054901 (2004)

P. Braun-Munzinger: Nucl. Phys. A 772, 167 (2006) K. Redlich: Phys. Lett. B 603, 146 (2004)

Guannan Xie

FXT Setup @ STAR

Conventions: beam-going direction is the positive direction

Guannan Xie

Analysis Procedure

- 2018 FXT 3.85GeV ($\sqrt{s_{NN}} = 3.0 \text{ GeV}$) ~250M, $y_{mid} \sim 1.05$.
- $\phi \to K^+ + K^-$ (hadronic channel).
- TPC (de/dx) and TOF (β) for Kaon particle identification.
- ϕ meson signal was fitted with breit-wigner function.
- Wide p_T and centrality coverage for ϕ meson.

Efficiency Correction

- Tracking efficiency and acceptance effects are estimated with GEANT simulations embedded into real events.
- A data-driven method is used to extract tof matching and pid related efficiency.

Efficiency Corrected m_T Spectra

 ϕ -meson and K⁻ invariant yields in 0-10% most central collisions as a function of transverse kinetic energy (m_T-m₀) for various rapidity regions. Yields are fit with an exponential.

Systematic Estimation

STAR: Phys. Rev. C. 034909 (2009)

 dN/dp_T extrapolation with various functions to capture the unmeasured p_T range: (systematic source)

- Levy
- Blast-wave
- m_T exponential
- $p_T^{3/2}$ exponential
- p_T^2 Gaussian

Other systematic sources:

Tracking quality cuts and PID.

Yield : Rapidity Distribution

Rapidity distribution of K⁻ and ϕ -meson and the Gaussian extrapolation in y_{cm} for various centrality regions. Solid symbols are measured data, open ones are reflection.

¢/K⁻ Ratio

HADES: Phys. Lett. B 778, 2018.403-407, Phys. Rev. C. 80.025209. (2009) E917: Phys. Rev. C. 69.054901 (2004)

P. Braun-Munzinger: Nucl. Phys. A 772, 167 (2006) K. Redlich: Phys. Lett. B 603, 146 (2004)

 r_c : correlation length, radius of the volume inside which the production of particles with open strangeness is canonically conserved.

 ϕ/K^{-} ratio as a function of center of mass energy $\sqrt{s_{NN}}$ compared with statistical calculations with different r_c parameters. ~5 σ deviated from zero for 0-10% central and 10-40% central collisions.

Summary and Outlook

- First measurements of ϕ -meson production in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV with energy just above the NN threshold^{*}. * *A.I. Titov: Eur. Phys. J. A 7 (2000) 543-557*
- ϕ/K^{-} ratio deviates from zero with ~5 σ for 0–10% and 10-40% central collisions.
- Data favors the CE with strangeness correlation length ($r_c \sim 3.2$ fm), while GCE show a clear discrepancy at low energy.

<u>Outlook</u>

 Precise measurements of \$\oplus/K^-\$ on the centrality dependence from the STAR BES-II, to constrain the model calculations.

