Investigating Transversity and Fragmentation Functions with Hadrons in Jets at STAR

Jim Drachenberg for the STAR Collaboration

2021 Fall Meeting of the APS Division of Nuclear Physics October 13, 2021

Office of Science

OUTLINE

- Transversity and TSSAs
- STAR
- Hadrons-in-jets at STAR
- Looking forward

Transversity

Complete understanding of nucleon structure requires knowledge of

- Unpolarized PDF, f(x)
- Helicity PDF ($\Delta f(x)$) [see talk by A. Quintero]
- Transversity $(h_1(x) \text{ or } \delta q(x))$ chiral odd \rightarrow requires another chiral-odd distribution
 - $\Delta q(x) \delta q(x)$: direct connection to *non-zero OAM components* of proton wave function
 - Tensor charge, $\delta q = \int_0^1 [\delta q(x) \delta \overline{q}(x)] dx$

Accessed through global analyses in SIDIS + e^+e^- , e.g. via "Collins" or IFF asymmetries *Currently limited reach in* (x, Q^2) [see talks by B. Pokhrel, N. Ghimire]

Polarized Hadrons Within Jets

Collins mechanism

- J. Collins, NP B396, 161 (1993)
- Transversely polarized quarks inside transversely polarized proton
- Polarization transfer during hard scattering
- Distribution of hadrons correlated to quark polarization
- Azimuthal asymmetry in distribution of hadrons within the jet $sin(\phi_{s_4})$
 - Requires non-zero quark transversity
 - Requires spin-dependent, TMD FF

 $\begin{aligned} & \sin(\phi_{S_{A}} - \phi_{H}) \\ & \left(\begin{array}{c} analogous \ effect \ for \ gluom (here) \ polarization) \\ h_{1T}^{\perp a} \bullet f_{b/B} \bullet \Delta^{N} D_{\pi/q^{\uparrow}} \\ \Delta^{N} f_{a/A^{\uparrow}} \bullet \Delta^{N} f_{b^{\uparrow}/B} \bullet \Delta^{N} D_{\pi/q^{\uparrow}} \\ \end{array} \right) \\ & \sin(\phi_{S_{A}} + \phi_{H}) \end{aligned}$

The Solenoidal Tracker at RHIC

The Solenoidal Tracker at RHIC

Collins Effect at STAR

- Consistent with models based on SIDIS/e⁺e⁻
- Suggest robust factorization and universality
 - Not yet sensitive to evolution assumptions
- Consistency between 500 GeV and preliminary 200 GeV data (2012 RHIC run) for common $x_T = 2p_{T,jet}/\sqrt{s}$

STAR Collaboration, PRD 97, 032004 (2018) D'Alesio, Murgia, Pisano: PLB 773, 300 (2017) Kang, Prokudin, Ringer, Yuan: PLB 774, 635 (2017) Peak appears to shift to higher j_T for increasing Z

STAR 2015 Data: Higher Statistics at 200 GeV

STAR 2015 Data: Higher Statistics at 200 GeV

- Significantly improved precision for j_T study
- As with previous data neak annears to shift to

Kaon Asymmetries at 200 GeV

Neutral Pion in Electromagnetic Jet Asymmetries

- Electromagnetic (EM) jets reconstructed with photon candidates in forward EM calorimeter
- Asymmetries plotted vs. $z_{em} = E_{\pi^0}/E_{jet}$
- Asymmetries integrated over *z_{em}* are small
 - Expected from mixing of u and d-quarks for which the Collins effect has opposite sign
- Possible dependence on j_T

Theory: Kang, Prokudin, Ringer, Yuan, PLB 774, 635 (2017)

Summary

- TSSAs at STAR provide a unique window to nucleon structure and hadronization
 - Access transversity via dihadrons (collinear) and Collins (TMD)
 - Test TMD factorization/universality and evolution
 - Collins asymmetries consistent with expectations based on SIDIS
- STAR Collins asymmetries at 200 and 500 GeV informing model calculations
 - Asymmetries exhibit x_T scaling
 - Shape of asymmetries appears to depend on j_T
- Preliminary results from 2015 dataset
 - Improved precision at 200 GeV
 - First look at kaon asymmetries
- Published results for forward π^0 in EM-jet
 - Asymmetries small with possible dependence on j_T
- Analysis of (un)polarized data from recent runs underway

Stay tuned!

Back-up Slides

Unpolarized Hadrons Within Jets

Following the approach of PRD 92, 054015 (2015) and JHEP11 (2017) 068

- Formulate NLO partonic cross-section in terms of *universal* jet functions
- Also define semi-inclusive transverse-momentum-dependent (TMD) jet functions
- Facilitate comparison with standard TMDFF from SIDIS and e^+e^- using inclusive jets with $j_{\perp} \ll p_{T,jet} \times R$ calculated relative to standard jet axis
- Argue FFs universal to NLO, *including TMDFFs*
- No dependence on TMDPDFs

Status of In-jet FF Analysis

Two key steps in analysis

- Efficiency corrections (tracking and jet reconstruction)
- Bin migration correction, aka "unfolding"
 - Unfold in jet p_T , pion z, and pion j_T

Try different methods to minimize systematic uncertainties, e.g.

- 2-D and 3-D Bayesian with RooUnfold
- ROOT's Toolkit for Multivariate Analysis (TMVA)
 - Multilayer perceptron and boosted decision trees

Embedded Monte Carlo Studies

Detector-jet p_ [GeV/c]

Collins-like Effect at RHIC

Collins-like effect

- Sensitive to linearly polarized gluons in a transversely polarized proton
- Asymmetries consistent at zero in 500 GeV (shown) and also preliminary 200 GeV
- STAR data provide first-ever constraints

STAR Collaboration, PRD 97, 032004 (2018)