Transverse Spin Dependent Azimuthal Correlations of $\pi^+\pi^-$ pair in $p^\uparrow p$ Collisions at $\sqrt{s} = 200$ GeV at STAR

Overview:

- Motivation
- Transversity in *pp*
- Cross-Ratio Formalism
- STAR Experiment at RHIC and Datasets
- IFF Results
- Summary

Babu Pokhrel (For the STAR Collaboration) 10/13/2021

Transversity ($h_1(x)$ **) in** $p^{\uparrow}p$ **Collision, Coupling with FFs:**

Interference Fragmentation Function (IFF) Channel:

$$p^{\uparrow} + p \to h^+ h^- + X$$

$$d\sigma_{UT} \propto \sin(\phi_S - \phi_R) \int dx_a \ dx_b \ f_1(x_a) \underbrace{h_1(x_b)}_{d\hat{t}} \underbrace{d\Delta\hat{\sigma}}_{d\hat{t}} \underbrace{H_1^{\triangleleft}(z, M)}_{d\hat{t}} \\ A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto h_1 H_1^{\triangleleft} \qquad z = \frac{E^{h^+h^-}}{E^{parton}}$$

Azimuthal angle definitions for IFF channel:

- ϕ_s = angle between quark spin vector, \vec{s}_{a} , and scattering plane (spanned by $\overrightarrow{p}_{beam}$ and \overrightarrow{p}_{h})
- ϕ_R = angle between scattering plane and di-hadron plane (spanned by $\overrightarrow{p}_{h,1}$ and $\overrightarrow{p}_{h,2}$)

STAR publications:

- Phys. Lett. B 780 (2018) 332
- Phys. Rev. Lett. 115, 242501 (2015)

Αυτ

0.05

Babu Pokhrel

0.5

STAR

Experimental extraction of A_{IIT} **using Cross-Ratio Method:**

$$A_{UT}sin(\phi_S - \phi_R) = \frac{1}{P} \frac{\sqrt{N_{1,\alpha}^{\uparrow} N_{1,\beta}^{\downarrow}} - \sqrt{N_{1,\alpha}^{\downarrow} N_{1,\beta}^{\uparrow}}}{\sqrt{N_{1,\alpha}^{\uparrow} N_{1,\beta}^{\downarrow}} + \sqrt{N_{1,\alpha}^{\downarrow} N_{1,\beta}^{\uparrow}}}$$

- $N_{1,\alpha(\beta)}^{\uparrow(\downarrow)} \rightarrow$ Number of $\pi^+\pi^-$ in upper, α (lower, β), half of detector when spin direction is $Up(\uparrow)(Down(\downarrow))$
- *P* is average beam polarization.
- No jet reconstruction required. \bullet
- **Collinearity is preserved.**

 $\vec{p}_{h,1}(\pi^+)$

STAR Experiment

Babu Pokhrel

STAR Polarized Proton-Proton Dataset

Collision		
Polarization		
Year	2006	
\sqrt{s} (GeV)	200	
$L_{int} (pb^{-1})$	~1.8	
$< P_{beam} > (\%)$	~ 60	

Babu Pokhrel

STAR Preliminary: $A_{IT}^{sin(\phi_s - \phi_R)}$ vs $M_{inv}^{\pi^+ \pi^-}$

Babu Pokhrel

STAR Preliminary: $A_{IT}^{sin(\phi_s - \phi_R)}$ vs $p_T^{\pi^+ \pi^-}$

- $A_{UT}^{\sin(\phi_s \phi_R)}$ vs $p_T^{\pi^+ \pi^-}$ in different M_{inv} and $\eta^{\pi^+\pi^-}$ bins.
 - Large asymmetry signal at higher p_T in forward $\eta^{\pi^+\pi^-}$ region. Stronger signal when $\langle M_{inv} \rangle \sim M_{\rho}$.
 - Backward $\eta^{\pi^+\pi^-}$ signal is small, mainly from low *x* quarks from unpolarized beam.
- Systematic uncertainty includes effects related to PID and trigger bias.

Babu Pokhrel

STAR Preliminary: $A_{IIT}^{sin(\phi_s - \phi_R)}$ vs $\eta^{\pi^+ \pi^-}$

Top Panel:

• A_{UT} as a function of $\eta^{\pi^+\pi^-}$ with $p_T^{\pi^+\pi^-}$ and $M_{inv}^{\pi^+\pi^-}$ integrated.

Bottom Panel:

- *x*, fractional momentum of proton carried by quark, and z, fractional energy of struck quark carried by $\pi^+\pi^-$, as a function of $\eta^{\pi^+\pi^-}$.
- x and z are estimated from simulation.
- $\eta^{\pi^+\pi^-} > 0 \rightarrow \text{higher } x \text{ quarks} \rightarrow \text{large asymmetry signal}$
- $\eta^{\pi^+\pi^-} < 0 \rightarrow \text{low } x \text{ quarks} \rightarrow \text{small asymmetry signal}$
- Systematic uncertainty includes effects related to PID and trigger bias.

Babu Pokhrel

STAR Preliminary: $A_{IIT}^{sin(\phi_s - \phi_R)}$ vs $M_{inv}^{\pi^+\pi^-}$, $p_T^{\pi^+\pi^-}$ integrated

Babu Pokhrel

Summary

- $\pi^+\pi^-$ azimuthal correlation asymmetries, sensitive to the transversity, have been measured.
 - In $M_{inv}^{\pi^+\pi^-}$ bins, large forward asymmetries with a prominent peak at $M_{inv}^{\pi^+\pi^-} \sim M_{\rho}$, consistent with the theory.
 - In $p_T^{\pi^+\pi^-}$ bins, asymmetry increases linearly at higher $p_T^{\pi^+\pi^-}$. Asymmetry signal is more prominent when $M_{inv}^{\pi^+\pi^-} \sim M_{\rho}$.
 - can be probed. Lower asymmetry signal in $\eta^{\pi^+\pi^-} < 0$ is due to *low x quarks* coming from unpolarized beam.
- The statistical precision of the new 2015 results is significantly improved compared to the previous STAR measurements.
- Further improvements in PID systematic uncertainties expected with improved PID method based on TOF (In progress).
- These results can be used to test the universality between SIDIS, e^+e^- , and $p^\uparrow p$. In addition, these high precision results can be used to further constrain the global fits, especially at high x (> 0.1) regions.
- Ongoing IFF analysis using the 2017 dataset at $\sqrt{s} = 510 \text{ GeV} (L_{int} \sim 350 \text{ pb}^{-1})$. (Follow next talk from Navagyan Ghimire)
- constrain transversity.

Babu Pokhrel

• In $\eta^{\pi^+\pi^-}$ bins, integrated over $p_T^{\pi^+\pi^-}$ and $M_{inv}^{\pi^+\pi^-}$, asymmetry signal increases linearly in $\eta^{\pi^+\pi^-} > 0$ region, where **quarks with larger** x

• Planned unpolarized di-hadron cross-section measurement, combined with these high precision asymmetry results, will help to

