

Measurement of nuclear deformation in high-energy isobaric ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at STAR

Chunjian Zhang

For the STAR Collaboration

On the way to understand the nuclear structure

Measurement from lower energy literature and 0vetaeta search

 $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2 ar{arkappa}_e$ 96 Zr is a good candidate for the 0
uetaeta search $\left[T^{0v}_{1/2}
ight]^{-1}=G^{0v}ig|M^{0v}ig|^2ig\langle m_{etaeta}ig
angle^2$ (A Majorana nature?) 1 625.9 keV 1 497.8 keV 719.6 497 1 148.1 keV 778.2 keV $Q_{BB} = 3 350 \text{ keV}$

Chunjian Zhang

https://physics.aps.org/articles/v11/30 M. Alanssari et al., PRL116, 072501 (2016)

%Mo

DNP2022

Lower energy experiment data show large $\beta_{2,Ru}$ and $\beta_{3,Zr}$

	β_2	$E_{2_1^+}$ (MeV)	eta_3	$E_{3_{1}^{-}}$ (MeV)
⁹⁶ Ru	0.154	0.83	-	3.08
96 Zr	0.062	1.75	0.202, 0.235, 0.27	1.90

1) Rarely explored in experiments and model dependences

2) Nuclear structure can affect the eta decay and radioactive half-time

Unique isobar runs and the STAR detector

Special operation mode:

- Fill-by-fill switching between Ru+Ru and Zr+Zr
- Similar run conditions at STAR (minimize the systematics)
- Ideal systems to study nuclear structure and initial stage: $\mathcal{O}_{X+X} \stackrel{?}{=} 1$

Datasets:

 $\mathrm{Ru}{+}\mathrm{Ru}$ @200 GeV, $\mathrm{Zr}{+}\mathrm{Zr}$ @200 GeV

Measurement based on TPC:

 $|\eta| < 1.0, \ 0.2 < {
m p_T} < 2 \ {
m GeV/c}$

• Centrality based on uncorrected tracks $N_{ch}^{offline}$ in $|\eta| < 0.5$

Relativistic heavy-ion collisions and nuclear structure

Study nuclear structure via collectivity

$$v_2^2 = a_2 + b_2 \beta_2^2 + b_{2,3} \beta_3^2, \quad v_3^2 = a_3 + b_3 \beta_3^2$$

 $\frac{v_{2,Ru}^2}{v_{2,Zr}^2} \approx 1 + \frac{b_2}{a_2} \left(\beta_{2,Ru}^2 - \beta_{2,Zr}^2\right) - \frac{b_{2,3}}{a_2} \beta_{3,Zr}^2$
 $\frac{v_{3,Ru}^2}{v_{3,Zr}^2} \approx 1 - \frac{b_3}{a_3} \beta_{3,Zr}^2 < 1$ Approximate cancellation expected in noncentral collisions

Shou et al., PLB749, 215(2015) Li et al., PRC98, 054907(2018) Xu et al., PLB819, 1136453(2021) Giuliano et al., PRC104, L041903(2021) Zhang and Jia, PRL128, 022301(2022)

1) v₂ ratio: large β_{2,Ru}, negative contribution from β_{3,Zr} ⇒ Sharper increase in central
 2) v₃ ratio: strong decrease from β_{3,Zr} with negligible β_{2,Ru} distortion
 3) Residual effect due to radial structure, e.g., neutron skin in Zr
 4) No significant effect due to nuclear size R₀

✓ The large differences of v₂ and v₃ suggest $\beta_{2,Ru} \gg \beta_{2,Zr}$ and $\beta_{3,Ru} \ll \beta_{3,Zr}$. Direct measurement of octupole deformation in heavy ion collider

Study of nuclear structure via event-by-event fluctuations

- 1) <u>Nonmonotonic trend</u>: large suppression in mid-central and increase in central collisions
- 2) Enhancement from mid-central \Rightarrow larger $\beta_{2,Ru}$
- 3) Large suppression in mid-central \Rightarrow stronger octupole $\beta_{3,Zr}$

 $[p_T]$ fluctuations can also be used to constrain the nuclear deformation.

200

N^{offline}(InI<0.5)

Separate the impact of neutron skin and nuclear deformation

- 1) Difference in skin thickness between Ru and Zr impacts the intrinsic ellipticity of the collision systems, or elliptic flow relative to reaction-plane, v_2^{rp} .
- 2) Differences in nuclear deformations impact only the fluctuations of v_2 around v_2^{rp} .
- 3) This idea is confirmed by the STAR-published data from PRC105, 014901(2022).

(More investigations using STAR are on the way!)

Conclusions and outlooks

• v_n ratios as **a new probe to constrain** nuclear structure parameters:

• Mean p_T fluctuations also serve as a **complementary** probe to decipher nuclear structure:

The nonmonotonic trend with N_{ch} in mean, enhancement in normalized variance and normalized skewness ratios

• A significant step: separating the impact of nuclear skin and nuclear deformation on elliptic flow and its fluctuations (more studies on the way!)

Backup

Nonlinear coupling coefficient

