

Reaction Plane Correlated Triangular Flow in Au+Au Collisions at $\sqrt{s_{NN}} = 3.0$ GeV from STAR

Cameron Racz for the STAR Collaboration UC Riverside (cracz001@ucr.edu)

APS Division of Nuclear Physics October 28, 2022

Motivation

- Most STAR analyses of triangular flow (v_3) have been using collider mode data $(\sqrt{s_{NN}} = 7.7 200 \text{ GeV})$ with a focus on rapidity-even v_3 studies.
 - v_3 arises from event-by-event collision geometry fluctuations.
 - v_3 has no direct correlation to the first-order event plane (Ψ_1), only to Ψ_3 .
- Some models show that v_3 should fall to zero at much lower energies (~5 GeV) [1].
- Recent HADES results show there is a v_3 at $\sqrt{s_{NN}} = 2.4$ GeV, but now correlated to Ψ_1 [2].
- STAR fixed target (FXT) mode provides a unique opportunity to reach energies down to $\sqrt{s_{NN}} = 3.0 \text{ GeV}.$
- What kind of v_3 will we see at 3.0 GeV? If there is a correlation to Ψ_1 , can we understand the source?

[1] J. Auvinen and H. Petersen, Phys. Rev. C 88, 064908

[2] J. Adamczewski-Musch et al., Phys. Rev. Lett. 125, 262301

Cameron Racz

STAR Fixed Target Experimental Setup

- Au foil target + Au beam
 - $E_{beam} = 3.85 \text{ GeV}$
 - $y_{mid} = -1.045$
 - Beam used is the one pointing in the negative direction during normal collider operation; Forward direction is negative.

• Event Plane Detector (EPD) used for event plane reconstruction.

Particle Identification

- π^{\pm} and K^{\pm} are identified with dE/dx and m^2 info; protons identified with dE/dx.
- Black solid boxes = acceptance for v_3 vs centrality.
- Black dashed box = acceptance for v_3 vs rapidity.
- Red solid (dashed) lines = mid (target) rapidity.

Particle Identification

- Alternate acceptance made for proton, deuteron, and triton comparisons.
- Rather than p_T , we used $m_T m_0$ scaled by mass number *A*.
- Black solid boxes = acceptance for v_3 vs centrality.
- Red solid (dashed) lines = mid (target) rapidity.

- *d* and *t* identification:
 - dE/dx cuts vary for $|\vec{p}|$ bins of 0.1 GeV/*c* when
 - $|\vec{p}| \in [0.4, 3.0)$ for deuterons.
 - $|\vec{p}| \in [1.0, 4.0)$ for tritons.
 - For other $|\vec{p}|$, constant dE/dx and m^2 cuts are both used.

Analysis Methods

- Flow vectors $\overrightarrow{Q_m}$ are used to reconstruct event planes [3].
 - m =order of event plane harmonic; Ψ_m
- Weights w_i are p_T for TPC tracks and truncated nMIP (TnMIP) values for EPD hits.
- 0.3 < TnMIP < 2.0
 - Hits with TnMIP < 0.3 are rejected.
 - Hits with TnMIP > 2.0 are replaced with 2.0.

$$\vec{Q_m} = (Q_{m,x}, Q_{m,y})$$
$$= \left(\sum_i w_i \cos(m\phi_i), \sum_i w_i \sin(m\phi_i)\right)$$
$$\Psi_m = \frac{1}{m} \tan^{-1} \left(\frac{Q_{y,m}}{Q_{x,m}}\right)$$

• Recentering and Fourier shifting (10 terms) used to correct non-uniform detector effects.

$$\vec{Q}_{m,recentered} = \vec{Q}_m - \langle \vec{Q}_m \rangle$$

$$\Delta \Psi_m = \sum_{j=1}^{\infty} \frac{2}{jm} [\langle -\sin(jm\Psi_m) \rangle \cos(jm\Psi_m) + \langle \cos(jm\Psi_m) \rangle \sin(jm\Psi_m)]$$

[3] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

Cameron Racz

Analysis Methods

√s_{NN} = 3.0 GeV FXT Au+Au

Collisions at RHIC

STAR Preliminary

- 3 subevents used to calculate event plane resolution R_{nm} .
 - n =order of flow harmonic; v_n
 - EPD A: inner 8 rings (> 5 hits).
 - EPD B: outer 8 rings (> 9 hits).
 - TPC B: $-1 < \eta < 0$ (> 5 tracks).

چ ۳

0.25

0.2

Centrality (%)

🗕 Inner EPD ψ

Centrality Dependence

- Backward region $(0 < y_{CM} < 0.5)$ shows significant non-zero v_3 for protons.
- v_3 is correlated to Ψ_1 at $\sqrt{s_{NN}} = 3$ GeV.
- Effect has a strong dependence on centrality.

- All systematic uncertainties in the following include contributions from
 - Event/track QA cuts
 - Event plane resolution
 - Pion and proton identification cuts.
- Pions show no significant signal of v_3 .
- No conclusion can be made about kaons (not shown) due to low statistics.

Rapidity and p_T – Protons

[4] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 136941 (2022).
[5] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).

Nuclear Mass Number Scaling (A)

- A-scaling supports that nuclei are formed via coalescence.
- Significant non-zero $v_3\{\Psi_1\}$ observed for deuterons and tritons.
- In this acceptance region, deuterons scale with mass number, tritons do not.
- Triton results are currently under investigation for the following effects:
 - Fragmentation effects
 - Other unexpected effects

- All three species include TPC reconstruction efficiency corrections.
- $A = N_{proton} + N_{neutron}$
 - 2 for deuterons.
 - 3 for tritons.

Conclusions and Plans

- Measurements of $v_3{\Psi_1}$ at $\sqrt{s_{NN}} = 3.0$ GeV have been presented.
- Protons show a strong $v_3{\Psi_1}$ signal.
 - Rapidity odd.
 - Opposite slope to v_1 at 3 GeV.
 - Increases with centrality, rapidity, and p_T .
- The nuclear mass number scaling $(v_3 \{\Psi_1\}/A)$ for proton, deuteron, and triton was studied.
 - In our first look, deuterons scale with A while tritons do not.
 - Tritons show opposite sign of $v_3{\{\Psi_1\}}$ in more central collisions.
- Future Plans:
 - Incorporate more recent 3 GeV dataset from STAR with much higher statistics.
 - Use model simulations for deeper understanding of the source of $v_3{\{\Psi_1\}}$.
 - Investigate A scaling of $v_3\{\Psi_1\}$ in more depth.

Backup

Where does the triangular geometry come from?

