

Nuclear Tomography with Polarized Photon-Gluon Collisions at STAR

Isaac Upsal for the STAR collaboration Rice University/USTC 2022-10-29

Supported in part by

Office of Science

Photonuclear production in HIC

- Photoproduction of vector mesons follow $\gamma \mathbb{P} \rightarrow \rho^0$, J/ψ , etc. $(J^P = 1^-)$
 - Photon from the EM field of one nucleus fluctuates to a $q\overline{q}$ pair, interacts with pomeron or reggeon
 - Photon quantum numbers are $J^{PC} = 1^{--}$
- ρ_0 has been studied in UPCs
 - C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 89, 272302
 - L. Adamczyk et al. (STAR Collaboration) Phys. Rev. C 96, 054904
 - S. Acharyai *et al.* (ALICE Collaboration) JHEP06 (2020) 35
 - etc.
- J/ ψ coherent photoproduction has been seen in nuclear collisions (noted as excess yield at low p_{τ})
 - J. Adam et al. (ALICE Collaboration) Phys. Rev. Lett. **116**, 222301
 - J. Adam *et al.* (STAR Collaboration) Phys. Rev. Lett. **123**, 132302 Isaac Upsal - DNP

Measure ρ polarization

- Photon polarization vector aligned radially with the "emitting" source
 - Polarizations of measured ρ and its (otherwise identical) virtual partner are exactly 180°, out of sync
 - Hadronically produced ρs (+pions) have no such spin correlation
 - HBT interference, but not polarization-dependent interference
- Polarization dictates finalstate distribution of the $\pi^+\pi^$ pairs – allows for measurement

Two-source modulation

- Analogous to twosource pattern
- Expected modulation in $\Delta \phi$ is cos(2 $\Delta \phi$) [1]
- Interference strength depends on
 - Nuclear geometry (gluon distribution)
 - Impact parameter (detailed spatial distribution)

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

 $\Delta \phi = \phi(\pi^{+} + \pi^{-}) - \phi(\pi^{+} - \pi^{-})$

Interference in UPCs

Measurement in UPC

- Combine $\pi^+\pi^-$ pairs from events collected by the STAR UPC trigger
- Extremely clean $\rho^{_0}$ peak and obvious low- $p_{_T}$ peak
- The $p_{\scriptscriptstyle T}$ peak comes from a diffractive pattern
 - ρs are coherently photoproduced
 - This peak is consistent with model predictions of photoproduction and has <u>only</u> been explained with this production mechanism
 - Second peak of diffraction pattern visible

UPC results

- Strong modulation in A+A collisions
- Difference in Au+Au and U+U demonstrates sensitivity to nuclear geometry
- No interference pattern seen in p+A, as expected

Limits of coherent diffractive production in nuclear medium

Modification of two-source

- In two-source analogy hadronic interactions could be viewed as semi-opaque screen dividing the holes
- J/ψ measurements demonstrate coherent photoproduction in hadronic Au+Au collisions, but do not investigate how these hadronic interactions affect the wave function

EM studies and non-UPC

- UPC studies
 - Clean signal representative of only photon production
 - Unmuddied by effects of hadronic interactions
 - Ideal environment for studying pure photon interactions
- Non-UPCs: greater degree of polarization overlap between photons from their respective nuclei (larger initial signal)
- Signals from pure photoproduction may be modified by the medium
- Studying this process in non-UPCs tests our understanding of what "coherence" really means
 - How much can a nucleus break up and still have coherent interactions?
 - How might this breakup affect the overall wave function?

Non-UPC collisions

- Photoproduction signal expected to increase in non-UPCs
 - Theory plot is a prediction of the size of this effect with <u>no</u> hadronic interactions
- Measures both polarization and quantum interference. These have been measured in A+A (global polarization + HBT), but not yet together
- Can polarization and quantum entanglement survive the abundant hadronic interactions of a non-UPC?
 - If so, how might they be modified?

p_{T} distributions

- Au+Au 200 GeV (taken in 2014 and 2016)
- ρ⁰ swamped by combinatorics in central collisions → focus on peripheral collisions
- Hadronic component of the p_{T} distribution can be divided out (OS SS)/SS
- Fit with $p_0 * UPC_{p_1}(x) + p_1/(1 + x^2/p_2)^2$
- Clear signal of coherent photoproduction!
- Distributions fit using UPC results to demonstrate this effect
 - Coherent part of fit from UPC (p₀ parameter)
 is ~ 8 standard deviations for each fit

Subtracting background in $\Delta \phi$

- Dominant background makes subtraction much more important than in the UPC data
- Background estimated by same-sign pairs
- Subtraction method:

$$(S+B)\langle\cos(2\Delta\phi)\rangle_{OS} = B\langle\cos(2\Delta\phi)\rangle_{SS} + S\langle\cos(2\Delta\phi)\rangle_{True}$$
$$\Rightarrow \langle\cos(2\Delta\phi)\rangle_{True} = \frac{S+B}{S}\langle\cos(2\Delta\phi)\rangle_{OS} - \frac{B}{S}\langle\cos(2\Delta\phi)\rangle_{SS}$$

Mass

Comparison to UPC

- Signal persists in peripheral events
- Wavefunction is surviving potential decoherence from hadronic interactions
- There does not appear to be a strong centrality dependence
 - Though expectation is increasing signal

Conclusions

- Clear excess at low p_{τ} is evidence of coherent production in peripheral Au+Au collisions.
- First measurements of a $cos(2\Delta\phi)$ modulation in the angular distribution of ρ daughters due to photon polarization (arXiv:2204.01625)
 - Strong modulation in measurements of Au+Au and U+U UPC events
 - This interference survives the strongly-interacting medium of a peripheral HIC (Au+Au data)
 - Possible effects from wave function collapse are relatively small