

리티티아

LINAC

Search for the Chiral Magnetic Effect Using STAR BES-II Data with Event Shape Selection

Zhiwan Xu (UCLA) For the STAR Collaboration October 29, 2022 RHIC

STAR

Supported in part by

- Chirality imbalance coupled with strong magnetic field induces a charge separation
- To quantify the collective motions including the charge separation, we expand the particle azimuthal angle distribution as:

 $\frac{dN_{\pm}}{d\phi} \propto 1 + 2v_1 \cos(\phi - \Psi_{\rm RP}) + 2v_2 \cos[2(\phi - \Psi_{\rm RP})] + \dots + 2a_{\pm} \sin(\phi - \Psi_{\rm RP}) + \dots$

D. Kharzeev, Phys. Lett. B 633, 260 (2006). S. A. Voloshin, Phys. Rev. C 70, 057901 (2004).

along the B field direction (violates Parity Symmetry dynamically in strong interaction!)

 $\propto \mu_5 |\vec{\mathbf{B}}|$

Chiral Magnetic Effect

Non-CME

$$\phi_1^+$$

 ψ_2
 ψ_2
 ψ_2
 ψ_2

Flowing resonance decay

$$\gamma^{112} = \langle \cos(\phi_1 + \phi_2 - 2\psi_{\rm F}) \rangle$$

$$\Delta \gamma^{\rm CME} = \gamma^{\rm OS} - \gamma^{\rm SS} > 0$$

Decay of flowing resonance

 $\Delta \gamma^{\rm reso} = \gamma^{\rm OS} - \gamma^{\rm SS} \propto \frac{v_2}{N}$

- In experiment $\psi_{RP} \rightarrow \psi_2$ or ψ_1

D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016).

$$a_1 \cdot a_1$$

 $\langle \rho_{\rm RP} \rangle = \langle \cos(\phi_1 - \psi_{\rm RP}) \cos(\phi_2 - \psi_{\rm RP}) \rangle - \langle \sin(\phi_1 - \psi_{\rm RP}) \sin(\phi_2 - \psi_{\rm RP}) \rangle$

CME signal: difference between opposite-sign and same-sign correlation

 $\propto v_2$

• Indicator of background $\gamma^{132} = \langle \cos(\phi_1 - 3\phi_2 + 2\psi_{\rm RP}) \rangle \sim v_2 \delta$

Event Shape Selection

R. Milton, G. Wang, M. Sergeeva, S. Shi, J. Liao, and H. Z. Huang, Phys. Rev. C 104, 064906 (2021).

Flow vector to control the event shape:

$$\overrightarrow{q_n^{A}} = (q_{n,x}^{A}, q_{n,y}^{A})$$

$$q_{n,x}^{A} = \frac{1}{\sqrt{N}} \sum_{i}^{N} \cos(n\phi_i^{A}),$$

$$q_{n,y}^{A} = \frac{1}{\sqrt{N}} \sum_{i}^{N} \sin(n\phi_i^{A}),$$

• For events in each q^A class, v_2 and $\Delta \gamma$ are measured using POIs in sub-event (A), and EP estimated from independent sub-event (B).

• $\Delta \gamma(q_2^2)$ and $v_2(q_2^2) \rightarrow \Delta \gamma(v_2)$

Event Shape Selection (ESS) approach

$\Delta \gamma^{112}$ and v_2 {TPC EP} at 27 GeV

- Both ESS approaches can extrapolate $\Delta \gamma_{ESS}^{112} = (1 2v_2) \cdot \text{Intercept}$

pair parent obtained from adding momenta of two particles to mimic decay kinematics

• ESS with TPC EP reduces the flow background, but residual non-flow correlation remains • $\Delta \gamma^{132}$ (almost pure background) indicates ESS method removes substantial backgrounds

- Using EPD, short-range nonflow contribution is significantly suppressed
- Approaches with single and pair q_2^2 show similar results.
- Finite $\Delta \gamma_{ESS}^{112}$ in mid central events ; $\Delta \gamma_{ESS}^{132}$ consistent with zero for all centralities.

27 GeV : EPD spectator plane

19.6 GeV : TPC EP

- In general, 19.6 GeV data show similar behavior as 27 GeV.
- Finite $\Delta \gamma_{ESS}^{112}$ in mid-central, non-flow largely affects peripheral region.

DNP 2022, New Orleans, LA

- We use EPD in aid of nonflow background suppression in $\Delta \gamma_{ESS}^{112}$.
- Approaches with single and pair q_2^2 show similar results.
- Finite $\Delta \gamma_{ESS}^{112}$ at mid central collisions

19.6 GeV : EPD spectator plane

- Spectator plane is more correlated to the magnetic field direction.
- Finite $\Delta \gamma_{ESS}^{112}$ in mid central events
- $\Delta \gamma_{ESS}^{132}$ consistent with zero for all centralities.

10

Ratio of $\Delta \gamma_{ESS}^{112} / \langle \Delta \gamma^{112} \rangle$

• The ratio of ESS to inclusive $\Delta \gamma^{112}$ is ~ 30% for mid-centrality range at both energies.

11

- Flow (v₂-related) BKG and nonflow effects contribute to nearly 70% of $\langle \Delta \gamma^{112} \rangle$.
- Remaining 30% fraction may indicate possible CME in Au+Au, which needs further investigation!

Conclusions

- We demonstrate that event shape selection (ESS) approach substantially suppresses (by ~70%) v_2 related backgrounds, enhancing the CME signal portion. The choice of POI from TPC and EPD EPs is very effective for ESS to search for
- CME.
- Shape selections using single and pair q_2^2 showed similar results. • The ESS method shows the CME contribution in inclusive $\Delta \gamma^{112}$ is lower than 30% in mid-central collisions for 19.6 GeV and 27 GeV.
- Next: go lower energy at 7.7 GeV...

Thank you

Backups

Datasets and Cuts

27 GeV Au+Au 2018 (27GeV_production_2018)		19.6 GeV Au+Au 2019 (production_19GeV_2019)	
Event level cuts	Track level cuts	Event level cuts	Track level cuts
Vz{TPC} < 70 Vr < 2 cm Vz{VPD}-Vz{TPC} < 4 cm	nFitHits>=15 DCA < 2 cm, 0.2 < pT < 2 GeV/c, η <1.	Vz{TPC} < 70 Vr < 2 cm Vz{VPD}-Vz{TPC} < 10 cm	nFitHits>=15 DCA < 3 cm, 0.2 < pT < 2 GeV/c, η <1. (η <1.5 if construct TPC
	(TPC EP) using pions as POI: TOF matching, TOF mass DCA < 1 cm, $ \eta $ <0.9, pT > 0.2 GeV/c, p < 1.6 GeV/c, $ n\sigma_{\pi} $ <2, nHitsDedx>15		(TPC EP) using pions as POI: cut same as 27 GeV.

For 0-80%, Before: 1.0 x $10^9 \rightarrow$ After cut: 3.6 x 10^8 events.

default systematic check	tic check
Systematic clieck default systematic clieck	
$ V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} < 0 < V_z < 70 \text{ cm} \qquad 0 < V_z < 70 \text{ cm} \qquad $	$< 70 \mathrm{cm}$
$\frac{1 \text{ cm}}{\text{global DCA (for }\pi)} < 1 \text{ cm}} < 0.5 \text{ cm} < 1 \text{ cm} < 2 \text{ cm} < 1 $	cm
n imilar as leader $\frac{n \text{FitHits (for } \pi)}{1} > 15 > 20$	20
Similar as isobar $n\sigma_{\pi}$ (for π) $ n\sigma_{\pi} < 1.5$ $n\sigma_{\pi}$ (for h without n) $n\sigma_{\pi} < -2$ $n\sigma_{\pi} < -2$	$\frac{-3}{-3}$
Dind analysis TOF mass ² (for π) $-0.01 < m_{\pi}^2 < 0.1 \text{ GeV}^2/c^4$ $0 < m_{\pi}^2 < 0.08 \text{ GeV}^2/c^4$ The set of the method of the matrix of the set of the s	
Track Splitting ratio (for π) no cut $0.52 < nFitHits/nMaxHits < 1.05$ Track Splitting ratio (for π) no cut $0.52 < nFitHits/n$	

Zhiwan	Xu
---------------	----

For 0-80%, Before: 1.3 x $10^9 \rightarrow$ After cut: 3.1 x 10^8 events.

